《高等数学》课程教学资源(课件讲稿)第四章 不定积分_4-1 不定积分的概念与性质

第四章第一节不定积分的概念与性质原函数与不定积分的概念二、 基本积分表三、不定积分的性质
二、 基本积分表 三、不定积分的性质 一、 原函数与不定积分的概念 第一节 不定积分的概念与性质 第四章

一、原函数与不定积分的概念定义1.若在区间I上定义的两个函数F(x)及f(x)满足 F'(x)= f(x) 或 dF(x)= f(x)dx,则称 F(x) 为f(x)在区间I上的一个原函数例(sin x)=cosx sinx是cos x的一个原函数.(lnx) ==(x>0)Xlnx是一在区间(0,+oo)内的一个原函数Xln(-x)是一在区间(-o0,0)内的一个原函数X
一、 原函数与不定积分的概念 定义 1 . 若在区间 I 上定义的两个函数 F (x) 及 f (x) 满足 在区间 I 上的一个原函数 . 则称 F (x) 为f (x) 例 (sin ) cos x x 1 ln ( 0) x x x sin cos . x x 是 的一个原函数 1 ln (0, ) . x是 在区间 内的一个原函数 x 1 ln( ) ( ,0) . x x 是 在区间 内的一个原函数

问题:1.在什么条件下,一个函数的原函数存在?2.若原函数存在,它如何表示?定理1.若函数f(x)在区间I上连续,则f(x)在I上存在原函数简单地说:连续函数一定有原函数定理2.若F(x))是f(x)的一个原函数,则f(x)的所有原函数都在函数族Fx)+C(C为任意常数)内
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 存在原函数 . 简单地说: 连续函数一定有原函数。 定理 2. 原函数都在函数族 ( C 为任意常数 ) 内

定理2.若F(x)是f(x)的一个原函数,则f(x)的所有原函数都在函数族F(x)+C(C为任意常数)内证: 1) : (F(x)+C)=F'(x)= f(x):F(x)+C是f(x)的原函数2)设Φ(x)是f(x)的任一原函数,即@(x)= f(x)又知F(x)= f(x): [Φ(x)- F(x))=@'(x)- F'(x) = f(x)- f(x)= 0故Φ(x)= F(x)+Co(Co为某个常数)它属于函数族 F(x)+C
定理 2. 原函数都在函数族 ( C 为任意常数 ) 内 . 证: 1) 又知 [ ( x ) F ( x )] ( x ) F ( x ) f ( x ) f ( x ) 0 故 0 ( x ) F ( x ) C ( ) C 0 为某个常数 它属于函数族 F ( x ) C . 即

定义2.f(x)在区间I上的原函数全体称为f(x)在I上的不定积分,记作「f(x)dx,其中f(x)一被积函数;「一积分号;(P185)x 一积分变量;f(x)dx 一被积表达式若 F'(x)= f(x),则「 f(x)dx=F(x)+C_(C为任意常数)[e"dx= e"+C例如,C称为积分常数不可丢
不定积分的几何意义:f(x)的原函数的图形称为f(x)的积分曲线[ f(x)dx 的图形一 f(x)的所有积分曲线组成的平行曲线族X
不定积分的几何意义: 的原函数的图形称为 f ( x) dx 的图形 的所有积分曲线组成 的平行曲线族. y O x0 x 的积分曲线

例1.设曲线通过点(1,2),且其上任一点处的切线斜率等于该点横坐标的两倍,求此曲线的方程解: y'=2x:: y = [2xdx = x? + C(1,2)所求曲线过点(1.2),故有2 =12 +CC=1因此所求曲线为y=x2+1
例1. 设曲线通过点(1, 2), 且其上任一点处的切线 斜率等于该点横坐标的两倍, 求此曲线的方程. 解: 所求曲线过点 (1, 2) , 故有 因此所求曲线为 1 2 y x y x (1,2) O

从不定积分定义可知:O[Jf(x)dx]= f(x) 或d[Jf(x)dx]= f(x)dx1dx(2) [F'(x)dx=F(x)+C 或 [dF(x)=F(x)+C利用逆向思维二、 基本积分表 (P188){kdx= kx+C(1)(k为常数)(2) Jx"dx=++C (μ*-1)x<0时(3) 『= Inx|+C(In x D'=[In(-x)]}' =x
d x d (1) f ( x)d x f ( x ) 二、 基本积分表 (P188) 从不定积分定义可知: d 或 f ( x)dx f ( x ) d x x C (2) F ( x ) d F ( x) 或 C d F ( x) F ( x) 利用逆向思维 (1) kdx k x C ( k 为常数) (2) x dx x C 1 1 1 x d x (3) ln x C x 0时 ( 1) ( l n x ) [ ln ( x ) ] x 1

dx或-arccotx+C(4arctan x + Cdxarcsin x+C 或- arccos x+ C(5)(6)Icos xdx = sin x+ C(7)Isin xdx = - cos x + Ci - (8)[- esc d -co++ (9)
2 1 d (4) xx a r c t a n x C (6) cos xdx s in x C x x2 cosd (8) sec x d x 2 t a n x C 或 a r c c o t x C 2 1d (5) xx a r c s i n x C 或 a r c c o s x C (7) sin xdx c o s x C x x2 sind (9) csc x d x 2 c o t x C

sec x tan xdx = sec x + C(10)(11)I csc xcot xdx = - csc x + C(12) [e'dx= e*+ Cgl(13) [a'dx =Ina
(1 0) sec x tan xdx s e c x C (1 1) csc x cot xdx c s c x C x x (1 2) e d C x e a x x (1 3) d C a a x ln
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(课件讲稿)第六章 定积分的应用_6-2 定积分在几何学上的应用.pdf
- 《高等数学》课程教学资源(课件讲稿)第六章 定积分的应用_6-1 定积分的元素法.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章 定积分_5-4 反常积分.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章 定积分_5-3 定积分的换元法与分部积分法.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章 定积分_5-2 微积分基本公式.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章 定积分_5-1 定积分的概念与性质.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-8 常系数非齐次线性微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-7 常系数齐次线性微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-6 高阶线性微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-5 可降阶高阶微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-4 一阶线性微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-3 齐次方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-2 可分离变量微分方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第七章 微分方程_7-1 微分方程的基本概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第四章 不定积分_4-4 有理函数的积分.pdf
- 《高等数学》课程教学资源(课件讲稿)第四章 不定积分_4-3 分部积分法.pdf
- 《高等数学》课程教学资源(课件讲稿)第四章 不定积分_4-2 换元积分法.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章 导数与微分_2-5 函数的微分.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章 导数与微分_2-4 隐函数和参数方程求导及相关变化率.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章 导数与微分_2-3 高阶导数.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第一节.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第三节.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第二节.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第五节.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第六节.pdf
- 《高等数学》课程教学资源(课件讲稿)第三章课件_第三章第四节.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章课件_第二章第一节导数的概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章课件_第二章第二节函数的求导法则.pdf
- 《高等数学》课程教学资源(课件讲稿)第二章课件_第二章第四节微分.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章课件_第五章第4节定积分的应用.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章课件_第五章第三节广义积分.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章课件_第5章第1节 定积分的概念及性质.pdf
- 《高等数学》课程教学资源(课件讲稿)第五章课件_第5章第2节微积分基本公式.pdf
- 《高等数学》课程教学资源(PPT课件)第九章多元函数微分法及其应用_第一节多元函数的基本概念.ppt
- 《高等数学》课程教学资源(PPT课件)第九章多元函数微分法及其应用_第七节方向导数与梯度.ppt
- 《高等数学》课程教学资源(PPT课件)第九章多元函数微分法及其应用_第三节全微分.ppt
- 《高等数学》课程教学资源(PPT课件)第九章多元函数微分法及其应用_第九章多元函数微分法及其应用习题课.ppt
- 《高等数学》课程教学资源(PPT课件)第九章多元函数微分法及其应用_第八节多元函数的极值及其求法.ppt
- 《高等数学》课程教学资源(PPT课件)第八章向量代数与空间解析几何_第一节向量及其线性运算.ppt
- 《高等数学》课程教学资源(PPT课件)第八章向量代数与空间解析几何_第三节平面及其方程.ppt