复旦大学:《数学分析》精品课程教学资源(练习题)习题六(解答)

第六章第1节3++*++-10%1. (1)x2+C;343(2)3ex-cosx+C11X9+1(3)-a+C;a+1Ina(4)x-cotx+C;(5) -2cotx-secx+C;5+4x3-8x+C;(6)1x3_1(7) +2x+C;3X1-312S(8)+2x+2x2+3x3-6x6+C;(2)*4x12(9)+C;+n)In49ln93(2)*5(10)2x-+C ;n3(11) sinx-cosx+C;(12)2arctanx-3arcsinx+C;4(13)x4+C;157(14)-2csc2x+C2.曲线方程:y=Inx-24333-x+C;3. (1)y=434(2)曲线方程:+3-x+y=4第2节1
第六章 第 1 节 1 . ( 1 ) x + x − x 2 + C 3 4 2 3 10 32 41 ; ( 2 ) 3 e x − cos x + C ; ( 3 ) a C a x a a x + + + + ln1 1 1 1 ; ( 4 ) x − cot x + C ; ( 5 ) − 2cot x − sec x + C ; ( 6 ) x − x + 4 x − 8 x + C 56 71 7 5 3 ; ( 7 ) x C x x − + 2 + 1 31 3 ; ( 8 ) x + x + x + x − x + C − 61 31 21 23 2 2 3 6 32 ; ( 9 ) C x x x ⎟ + ⎠⎞ ⎜⎝⎛ − + 32 32 ln2 9 ln 9 1 ln 4 4 ; (10 ) x C x ⎟ + ⎠⎞ ⎜⎝⎛ − 32 32 ln5 2 ; (11 )sin x − cos x + C ; (12 ) 2arctan x − 3arcsin x + C ; (13 ) x − x 4 + C 15 47 154 74 ; (14 ) − 2csc 2 x + C . 2.曲线方程: y = ln x − 2 . 3 . ( 1 ) y = x 3 − x + C 4 43 ; ( 2)曲线方程: 45 43 34 y = x − x + . 第 2 节 1

-1. (1)-In|4x -3|+C ;4K2(2)arcsin2x+C;2(3)+C2e-+1@3x+2 +C;(4)394x2·6*(5)+C;+In 4In9In6V10V1o(6)x+C;arctan21021(7)=cos"x+=cosx-cosx+C;531tan"x+C;(8)1111(9)cos8x-cos2x+C;16411(10)sin10x+C;=x+220I(11)+C;x2+4x+5(12)-2cos/x+C;32(13) -=(1-2x3)4 +C;9x元(14)+C:-cot(2421号(sin x-cosx) + C:(15)21(16)+C;arcsinx(17)arctan(x-1)+C;12x.1V9-4x2+C;(18)arcsin2342
1 . ( 1 ) ln 4 x − 3 + C 41 ; ( 2 ) arcsin 2 x + C 22 ; ( 3 ) C ee xx + +− 11 ln 21 ; ( 4 ) e C x + 3 + 2 31 ; ( 5 ) C x x x + ⋅ + + ln 6 2 6 ln 9 9 ln 4 4 ; ( 6 ) x + C 2 10 arctan 10 10 ; ( 7 ) − x + cos x − cos x + C 32 cos 51 5 3 ; ( 8 ) x + C 11 tan 111 ; ( 9 ) − x − cos 2 x + C 41 cos 8 161 ; (10 ) x + sin10 x + C 201 21 ; (11 ) C x x + + + − 4 5 1 2 ; (12 ) − 2cos x + C ; (13 ) − − x 4 + C 3 3 ( 1 2 ) 92 ; (14 ) C x ⎟ + ⎠⎞ ⎜⎝⎛ − − 2 4 cot π ; (15 ) x − x 3 + C 2 (sin cos ) 23 ; (16 ) C x − + arcsi n 1 ; (17 )arctan( x − 1 ) + C ; (18 ) x C x + − + 2 9 4 41 32 arcsin 21 ; 2

(19)- lncos V1+x2+C;1(20)arctan(sin x)+C.2. (1) In(/1+e2x -1)-x+C;V1+x? -1(2) ln-+C;风(3)(arctan /x)?+C;1(4)+C;xlnx(r+ 2)22(x + 2)21(5)+C;227(x + 1)"+1(x + 1) "+32(x + 1)n+2(6)+C;n+3n+2n+13-1--(1+x3)2(7)-(1+x2)2+C;3x3x3VA2(8)2-9-3arccos-=+C;xx(9)+C;Vi-x2x(10)Cα?/x? +a?(11)x?-a?-alnx+x?-a?LC3a+xX/x(2a-x)+3a? arcsin+C;(12)2V2a(13)2x-In(1+/2x)+C;107433.6(1- x)3 +(1-x)3 ,(14)-(1-x)3 +C;10471(15)arccos-+C;xa?1xva?-x?(16) arcsin=+C22a3
(19 ) − + x + C 2 ln cos 1 ; (20 ) arctan(sin x ) + C 21 2 . 2 . ( 1 ) e x C x ln( 1+ − 1 ) − + 2 ; ( 2 ) C xx + 1 + − 1 ln 2 ; ( 3 ) x + C 2 (arctan ) ; ( 4 ) C x x − + ln1 ; ( 5 ) C x x + + − + 7 ( 2 ) 22 ( 2 ) 22 21 ; ( 6 ) C n x nx n x n n n + + + + ++ − + + + + + 1 ( 1 ) 2 2 ( 1 ) 3 ( 1 ) 3 2 1 ; ( 7 ) x C x x x + − + + 23 2 3 21 2 ( 1 ) 3 1 ( 1 ) 1 ; ( 8 ) C x x − − + 3 9 3arccos 2 ; ( 9 ) C x x + − 2 1 ; (10 ) C a x a x + + 2 2 2 ; (11 ) x − a − a x + x − a + C 2 2 2 2 ln ; (12 ) C ax x a x a a x − + + + − 2 ( 2 ) 3 arcsin 2 3 2 ; (13 ) 2 x − ln( 1 + 2 x ) + C ; (14 ) − − x + − x − − x 3 + C 4 37 3 10 ( 1 ) 43 ( 1 ) 76 ( 1 ) 103 ; (15 ) C x + 1 arccos ; (16 ) C a a x − x a − x + arcsin + 2 2 1 2 2 2 ; 3

n1(17)12+(3a2,3(18) arcsin x-tan(_arcsin x)+C;2133元(19)Inl.8(x4-1)24(x4-1)44(20)-r+Cn+112.3.(1)e2.x+C;24X(2)+CIn/xIn2(3) - (x*-2)cos3x+ 2sin3X+C;279(4)-xcot x+In|sinx|+C;xsin2xcos2x+C;(5)448(6)xarcsinx+/1-x?+C;1(7)xarctanx-In(1+x2)+C;2+ artanx-1+2+In(+x*)+C;(8)36″61x?+C;(9) xtanx+In|cosx/-2(10)-2/1-xarcsinx+4/1+x+C;(11) x(lnx-1)? +x+C;1-1x+C:1x'inx-(12)3°9(13) - "(5cos5x+sin5x) +C ;26-e*(5-2sin2x-cos2x)+C;(14)104
(17) a x C a x − − + 2 3 2 2 2 3 ( ) 3 1 ; (18) x − arcsin x) + C 2 1 arcsin tan( ; (19) C x x x x + − + + − − − − 4 ln 1 4 3 4( 1) 3 8( 1) 1 4 4 4 2 4 ; (20) C x x n n n + +1 ln 1 . 3.(1) xe e C x x − + 2 2 4 1 2 1 ; (2) x x x C x − − − − + +2 2 ( 1) 4 1 ln | 1| 2 1 ln | 1| 2 ; (3) C x x x x + + − − 9 2 sin 3 27 (9 2) cos3 2 ; (4)− x cot x + ln | sin x | +C ; (5) C x x x x + + + 8 cos 2 4 sin 2 4 2 ; (6) x x + − x + C 2 arcsin 1 ; (7) x x − ln(1+ x ) + C 2 1 arctan 2 ; (8) x x − x + ln(1+ x ) + C 6 1 6 1 arctan 3 1 3 2 2 ; (9) x x + x − x + C 2 2 1 tan ln | cos | ; (10)− 2 1− x arcsin x + 4 1+ x + C ; (11) x(ln x −1) 2 + x + C ; (12) x x − x + C 3 3 9 1 ln 3 1 ; (13) C e x x x + + − − 26 (5cos5 sin 5 ) ; (14) e x x C x (5 − 2sin 2 − cos 2 ) + 10 1 ; 4

(15)_*+31n*+6lnx++C;x(16)(sinlnx+coslnx)+C;(17) x(arcsinx)? +2/1-x2 arcsinx-2x+C;(18) 2ev(x-2/x+2)+C;(19) 2e/*I(/x+1-1)+C;(20) xln(x+ /1+x2)-/1+x2 +C(cos x - sin? x)?4.+C;提示:对[f(x)f(x)dx采用分部积分2(1 + xsin x)45. -In|1-x/-x? +C6. -(e-r +I)In(1+e*)+x+C.sinxcos.x7.提示:令A=「-dx,B=[-dx,计算A+B,A-Bsin.x+cosxsinx+cosx-[(n -1)In-2 - sin "- xcos x] ;8. (1) Io =x+C,li =-cosx+C, In =(2) I。 = x+C,I; =-ln|cosx|+C, In =tan"-lx-1n-2n-1sinx(3)I。=x+C,I, =ln|secx+tanx|+C,In=[(n- 2)In-2 +cos"n-(4)I。=-cosx+C,I,=sinx-xcosx+CIn = nx"-I sinx-x" cosx-n(n-1)In-2 :(5) Io=e*+C,1;=le-e*(sin x - cos x)+C,11[n(n - 1)I n-2 +e* sin"- x(sin x-ncosx)] ;Inn2 +11xa+l +C,(6)1。=α+11-(xα+l In" x- nl n-1) ;In =α+(7)Io=arcsinx+C,1,=-/1-x2+C,5
(15) C x x x x + + + + − ln 3ln 6ln 6 3 2 ; (16) x x C x (sin ln + cosln ) + 2 ; (17) x(arcsin x) + 2 1− x arcsin x − 2x + C 2 2 ; (18) e x x C x 2 ( − 2 + 2) + ; (19) e x C x + − + + 2 ( 1 1) 1 ; (20) x x + + x − + x + C 2 2 ln( 1 ) 1 . 4. C x x x x + + − 4 2 2 2(1 sin ) (cos sin ) ;提示:对 采用分部积分. ∫ f (x) f '(x)dx 5.− − x −x + C . 2 ln |1 | 6. e e x C . x x − + + + + − ( 1)ln(1 ) 7.提示:令 ∫ + = dx x x x A sin cos cos , ∫ + = dx x x x B sin cos sin ,计算 A + B, A − B . 8.(1) , cos , I 0 = x + C I1 = − x + C [( 1) sin cos ] 1 1 2 n I x x n I n n n − = − − − ; (2) , ln | cos | , I 0 = x + C I1 = − x +C 2 1 tan 1 1 − − − − = n n n x I n I ; (3) , ln |sec tan | , I 0 = x + C I1 = x + x +C ] cos sin [( 2) 1 1 1 2 x x n I n I n n n− − − + − = ; (4) cos , sin cos , I 0 = − x + C I1 = x − x x + C 2 1 sin cos ( 1) − − = − − − n n n n I nx x x x n n I ; (5) (sin cos ) , 2 1 , I 0 e C I1 e x x C x x = + = − + [ ( 1) sin (sin cos )] 1 1 1 2 2 n n I e x x n x n I x n n − n + − + = − − ; (6) , 1 1 1 I 0 x + C + = α+ α ( ln ) 1 1 1 1 − + − + = n n I n x x nI α α ; (7) arcsin , 1 , 2 I 0 = x + C I1 = − − x + C 5

-[(n-1)In-2 -x"-1 /1-x];=/i+x(8) 10=2/1+x, 1,=n/+x-2n-3((n - 1)x"-I2n-2/1+x+13.15(x+/x+x+2+/m|++++/?++21+C;10.(1)(x2+x+2)2+3491623(x2 +2x-5)-(x+1)/2+2x-5+61n|x+1+/x2+2x-5|+C;(2)(3) V2 +x+1-31++x?+x+11+C;=In|x+22(4) -v5+x-x2+5,2x-1+C.arcsin2V2111.提示:证明ereta,a,e-aiai{ie"dxds1-1 x-141-2(i-1)(i-2)(i-1)!x(i-!x第3节1n/r-1/1. (1)+C2(x +1)4x+i3(2) -Iln|x+1+1n|x-11--ln(x2 +1)arctanx+C;44223213+41 1 | +31-3In|+1↓-5ln|x+21+(3)+C:88x+24(x+3)4(x + 3)23x+21(4)+C;arctan(x+2)-x+222(x2 + 4x +5)(x+1)?2x-1In3arctan(5)+C;32x2-x+1V3xln+x+11(6)arctan+c:2/3Xx2-x+11- x23-+2 +21x-801n|x+4]+C;(7)32(x-1)2432x+1-(8)x+lnarctan+C:4V/238V23x2+x+66
[( 1) 1 ] 1 1 2 2 n I x x n I n n = − n − − − − ; (8) I = 2 1+ x 0 , C x x I + + + + − = 1 1 1 1 ln 1 , 1 1 ( 1) 1 2 2 2 3 − − − + − − − = − n n n n x x I n n I 。 10.(1) x + x + + x + x + x + + x + + x + x + 2 | +C 2 1 ln | 16 7 ) 2 2 1 ( 4 1 ( 2) 3 5 2 2 2 3 2 ; (2) (x + 2x − 5) − (x +1) x + 2x − 5 + 6ln | x +1+ x + 2x − 5 | +C 3 1 2 2 2 3 2 ; (3) x + x + − x + + x + x +1 | +C 2 1 ln | 2 3 1 2 2 ; (4) C x x x + − − + − + 21 2 1 arcsin 2 5 5 2 . 11.提示:证明 ∫ e dx = x a x i i 1 1 − ⋅ − − i x i x e i a 2 ( 1)( 2) − ⋅ − − − i x i x e i i a x e i a x i ⋅ − − − ( 1)! " ∫ − + dx x e i a x i ( 1)! . 第 3 节 1.(1) C x x x + + + + − 2( 1) 1 1 1 ln 4 1 ; (2)− x + + x − − x + − arctan x + C 2 3 ln( 1) 2 1 ln | 1| 4 5 ln | 1| 4 1 2 ; (3) C x x x x x x + + − + − + − + − + + + − 2 4( 3) 3 4( 3) 13 2 2 ln | 3 | 8 41 ln | 1| 5ln | 2 | 8 1 ; (4) C x x x x x + + + + − + − + − 2( 4 5) 2 arctan( 2) 2 3 2 1 2 ; (5) C x x x x + − + − + + 3 2 1 3 arctan 1 ( 1) ln 2 1 2 2 ; (6) C x x x x x x + − + − + + + 2 2 2 1 3 arctan 2 3 1 1 1 ln 4 1 ; (7) x x x C x − + 21 − 80ln | + 4 | + 2 5 3 2 3 ; (8) C x x x x x + + − + + − + 23 2 1 arctan 4 23 43 6 ( 1) ln 8 1 2 2 ; 6

x+1(9)-ln-arctanx+C;x-12x? + /2x+1, V222(10)arctan(/2x+1)+-arctan(/2x-1)+C;In84x2 - 2x+14x? +x+1172x+1(11)-ln+C;arctan23x2 +1V32.12x+1(12) -In|x/+=in|x-1/+=In(x2 +x+1)++C:-arctanV3/33642x+1x+1(13)+C ;arctanV3V3x? +x+1-21n|1+* I+C;(14) In|x/-3x5 +21(15)-arctan(x+I)+C;10(xl0 + 2x° + 2)10xn1(16)-arctanx"+C2n(x2"+1)+2n14.(1)(x-1)2+4x+C;6x-a1+C:(2)2arcsinlh-a72x-1+3)/1+x-x2(3)+Farcsin/58-1+Vx4+1(4) In+C;x1x?_1,1/x?-1+In(x+/?+1)+C;(5)222-x+11(6) In 1+ 1-In/Nx-1(7) 2ln(V1+x +Vx)+C;2x2-1 J+1+C;(8)3x37
(9) x C x x − + − + arctan 2 1 1 1 ln 4 1 ; (10) x x C x x x x + + + − + − + + + arctan( 2 1) 4 2 arctan( 2 1) 4 2 2 1 2 1 ln 8 2 2 2 ; (11) C x x x x + + + + + + 3 2 1 arctan 3 1 1 1 ln 2 1 2 2 ; (12) C x x x x x + + − + − + + + + 3 2 1 arctan 3 1 ln( 1) 6 1 ln | 1| 3 2 ln | | 2 ; (13) C x x x x + + + + + + 1 1 3 2 1 arctan 3 4 2 ; (14) x − ln |1+ x | +C 7 2 ln | | 7 ; (15) x C x x x − + + + + + − arctan( 1) 10 1 10( 2 2) 2 5 10 5 5 ; (16) x C n x n x n n n + + + − arctan 2 1 2 ( 1) 2 . 4.(1) (x −1) 2 + 4x + C 6 1 ; (2) C b a x a + − − 2arcsin ; (3) C x x x x + − − + + − + 5 2 1 arcsin 8 7 (2 3) 1 4 1 2 ; (4) C x x x + −1+ +1 ln 2 4 ; (5) x − x x − + ln(x + x +1) + C 2 1 1 2 1 2 1 2 2 2 ; (6) x C x x x x − + − + − + −⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + + 1 1 1 1 ln 1 1 ln 1 2 ; (7)2ln( 1+ x + x ) + C ; (8) x C x x + + − 1 3 2 1 2 3 2 ; 7

(9)2/x-4/x+41n(4/x+1)+C;x-4)33(10)+C;25(x+13/x+1+2.3/x-2gln(/x+1- /x-2)- /3 arctan(11)+C2V3.3/x+14/1+x4_1.(12)arctan/i+x4+CIn244/1+x4 +15.提示:令Va+x=t,则[R(xVa+x,Vb+x)dx=[R(tV?+c)dt,再令2+c=t+uAtan--326. (1)=In+C;2tant22x2 tan =+12V32(2)-arctan+C;3V33V31x(3)-arctan(3tan-arctan(tan+C626x((4)Intan+1+C213tan=+112(5)+C;arctanV5V5(1-cOsx)(2 + cOsx)21(6)-InC:6(1+ cos x)3x11Itan?1+C(7)Intan-24221sin(x + a)(8)r+Ccos(a-b)cos(x+b)cOsx(9)cota-lnx+C;cos(x+a)9
(9)2 x − 4 x + 4ln( x +1) + C 4 4 ; (10) C x x ⎟ + ⎠ ⎞ ⎜ ⎝ ⎛ + − 3 5 1 4 25 3 ; (11) C x x x x x + ⋅ + + + ⋅ − − + − − − 3 3 3 3 3 3 1 1 2 2 ln( 1 2) 3 arctan 2 3 ; (12) x C x x + + + + + + − 4 4 4 4 4 4 arctan 1 2 1 1 1 1 1 ln 4 1 . 5.提示:令 a + x = t ,则 ∫ R(x, a + x, b + x)dx = ∫ R (t, t + c)dt 2 1 ,再令 t + c = t + u 2 . 6.(1) C x x + − + 3 2 tan 3 2 tan ln 3 1 ; (2) C x + + 3 1 2 2 tan arctan 3 2 3 ; (3) C x x + ) + 2 arctan( 3 tan 6 3 ) 2 tan 3 1 arctan( 6 3 ; (4) C x +1 + 2 ln tan ; (5) C x + + 5 1 2 3tan arctan 5 1 ; (6) C x x x + + − + 3 2 (1 cos ) (1 cos )(2 cos ) ln 6 1 ; (7) C x x − + 2 tan 4 1 2 ln tan 2 1 2 (8) C x b x a a b + + + − cos( ) sin( ) ln cos( ) 1 ; (9) x C x a x a − + + ⋅ cos( ) cos cot ln ; 8

1X,元、(10)-Intan(+C:-(sinx-cosx)22/22 9(11) -2cot2x+C;1(12) xarctan(/2 tan x)+CJ217. (1)er+C;x+1xlnx-In(x+V1+x)+C;(2)/1+x2(3) xln2(1+/1+x2)-2/1+x2In(x+/1+x2)+2x+C;2.38316号x21n?x(4)x2 Inx+x2 +C:3927e*[2 1)sin x-(x-1) cos ]+C ;(5)(6)xln(1+x2)-2x+2arctanx+C;I(aresin x) -↓x/1- aresin x+1x?+C;(7)X2423x+3(8)+C;-arctanVEVx-3(9)(x+1)arctanyx-x+C;(10)4/xsin/x-2(x-2)cos/x+C;(11) xtan号+C;2+sin+(12)+C;2V1+sinx-21-Iinse x+tan x+C;(13)-secxtanx-22(14) (x- sec x)esinx +C;lex1(15)+Crex1atanx+C;(16)arctanbab9
(10) C x x − x − + ) + 2 8 ln tan( 2 2 1 (sin cos ) 2 1 π ; (11)− 2cot 2x + C ; (12) x − arctan( 2 tan x) + C 2 1 . 7.(1) e C x x + +1 1 ; (2) x x C x x x − + + + + ln( 1 ) 1 ln 2 2 ; (3) x ln (1+ 1+ x ) − 2 1+ x ln(x + 1+ x ) + 2x + C 2 2 2 2 ; (4) x x − x x + x 2 + C 3 2 3 2 2 3 27 16 ln 9 8 ln 3 2 ; (5) e [ ] x x x x C x ( −1)sin − ( −1) cos + 2 1 2 2 ; (6) x ln(1+ x 2 ) − 2x + 2arctan x + C ; (7) x − x − x x + x + C 2 2 2 4 1 1 arcsin 2 1 (arcsin ) 4 1 ; (8) C x x + − + − 3 3 3 arctan 3 2 ; (9)(x +1) arctan x − x + C ; (10)4 x sin x − 2(x − 2) cos x + C ; (11) C x x + 2 tan ; (12) C x x + + − + + 1 sin 2 1 sin 2 ln 2 2 ; (13) x x − ln sec x + tan x + C 2 1 sec tan 2 1 ; (14)(x − sec x)esin x + C ; (15) C e e x x + + − 1 1 ln 2 1 ; (16) C b a x ab + tan arctan 1 ; 9

x(17)6lnN+C;/x +1x2 -11n1+x×+x+C;(18)-In2 1-x-+++(aresin)*+1x/1-x? arcsin x+C;(19)4241(20)-In(1+e")+C.x+1+er10
(17) C x x + +1 6ln 6 6 ; (18) x C x x x + + − − + 1 1 ln 2 1 2 ; (19)− x + x + x 1− x arcsin x + C 2 1 (arcsin ) 4 1 4 1 2 2 2 ; (20) e C e x x x − + + + + ln(1 ) 1 1 . 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题六(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题五(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题五(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题四(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题四(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题三(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题三(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题二(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题二(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题一(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题一(题目).pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)8 重积分变量代换公式的证明.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)7 条件极值问题与Lagrange乘数法.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)6 用多项式逼近连续函数.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)5 函数的幂级数展开.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)4 数学分析中一个反例的教学——处处不可导连续函数.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)3 函数项级数的一致收敛性.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)2 用微积分推导Newton的万有引力定律.pdf
- 复旦大学:《数学分析》精品课程授课教案(讲义)1 实数系的连续性——实数系的基本定理.pdf
- 中国矿业大学:《高等数学》课程教学课件(讲稿)第十章 重积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题七(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题七(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题八(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题八(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题九(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题九(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十一(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十一(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十二(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十二(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十三(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十三(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十四(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十四(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十五(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十五(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十六(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十六(解答).pdf
