《高等数学》课程教学资源(PPT课件)第十二章_D12_2数项级数及审敛法.ppt

第二节 第十二章 常款项级赵的审敘法 正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 HIGH EDUCATION PRESS 机动目录上页下页返回结束
二、交错级数及其审敛法 三、绝对收敛与条件收敛 第二节 一、正项级数及其审敛法 常数项级数的审敛法 机动 目录 上页 下页 返回 结束 第十二章

正项级数及其审敛法 00 若4,≥0,则称∑4n为正项级数 n= 定理1.正项级数》4n收敛二 部分和序列Sm n=. (n=1,2,.)有界 证:“一”若∑n收敛,则{Sn}收敛,故有界 n=1 :4n≥0,∴.部分和数列{n}单调递增 又已知{Sn}有界故{Sn}收敛,从而∑4n也收敛 n=l HIGH EDUCATION PRESS 机动目录上页下页返回结束
一、正项级数及其审敛法 若 0, n u n=1 un 定理 1. 正项级数 收敛 部分和序列 有界 . 若 收敛 , ∴部分和数列 又已知 有界, 故 从而 故有界. 则称 为正项级数 . 单调递增, 收敛 , 也收敛. 证: “ ” “ ” 机动 目录 上页 下页 返回 结束

00 定理2比较审敛法) 设∑4n,∑'n是两个正项级数 n=1n=1 且存在NeZ+,对一切n>N,有un≤kyn(常数k>0) 则有 (①)若强级数∑yn收敛,则弱级数∑”n也收敛: n=1 n=l 00 (2)若弱级数 ∑n发散,则强级数∑Vn也发散 n=1 n=1 证:因在级数前加、减有限项不改变其敛散性,故不妨 设对一切neZ+,都有un≤kvn, 令S,和on分别表示弱级数和强级数的部分和,则有 HIGH EDUCATION PRESS Oe0C08 机动目录上页下页返回结束
都有 定理2 (比较审敛法) 设 且存在 对一切 有 (1) 若强级数 则弱级数 (2) 若弱级数 则强级数 证: 设对一切 则有 收敛 , 也收敛 ; 发散 , 也发散 . 分别表示弱级数和强级数的部分和, 则有 是两个正项级数, (常数 k > 0 ), 因在级数前加、减有限项不改变其敛散性, 故不妨 机动 目录 上页 下页 返回 结束

Sn≤kon 00 (1)若强级数∑yn收敛,则有o=1imon n-→o0 n=1 因此对一切neZ,有Sn≤ko 由定理1可知,弱级数∑4n也收敛 n=1 (2)若弱级数∑4n发散,则有1imSn=∞, n=] n→0 因此1imon=o,这说明强级数∑'n也发散 n→0 n=1 HIGH EDUCATION PRESS 机动目录上 下页返回结
(1) 若强级数 则有 因此对一切 有 由定理 1 可知, (2) 若弱级数 则有 因此 这说明强级数 也发散 . 也收敛 . 发散, 收敛, 弱级数 机动 目录 上页 下页 返回 结束

例1.讨论p级数1+ 2P 的敛散性 解:1)若p≤1,因为对一切n∈Z, 而调和级数∑发散,由比较审敛法可知p级数∑ n=] n= 发散 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例1. 讨论 p 级数 + p + p ++ p + n 1 3 1 2 1 1 (常数 p > 0) 的敛散性. 解: 1) 若 p 1, 因为对一切 而调和级数 =1 1 n n 由比较审敛法可知 p 级数 n 1 发散 . 发散 , 机动 目录 上页 下页 返回 结束

2)若p>1,因为当n-1≤x≤n时 xb, 故 so] a{a n→o0 故强级数收敛,由比较审敛法知p级数收敛 HIGH EDUCATION PRESS 机动目录上页下页返回结束
p 1, 因为当 , 1 1 p p n x 故 − = n p n p x n n 1 d 1 1 − n n p x x 1 d 1 − − − = −1 −1 1 ( 1) 1 1 1 p p p n n 考虑强级数 − − − − = 1 1 2 1 ( 1) 1 p p n n n 的部分和 n + − = − − = 1 1 1 ( 1) 1 1 p p n k k k n → 故强级数收敛 , 由比较审敛法知 p 级数收敛 . 时, 1 ( 1) 1 1 − + = − p n + + + − + − − −1 −1 −1 −1 −1 ( 1) 1 1 3 1 2 1 2 1 1 p p p p p n n 1 2) 若 机动 目录 上页 下页 返回 结束

调和级数与p级数是两个常用的比较级数 若存在NeZ,对-切n≥N, (n≥。,则∑n发散: 00 n=1 ②):≤>则,收敛 n=1 HIGH EDUCATION PRESS DeOC①8 机动目录上页下页返回结束
调和级数与 p 级数是两个常用的比较级数. 若存在 , + N Z 对一切 n N , 机动 目录 上页 下页 返回 结束

例2.证明级数 n+D 发散 证:因为 n+1 (n=1,2,.〉 而级数 发散 根据比较审敛法可知,所给级数发散 HIGH EDUCATION PRESS 十 机动目录上页下页返回结束
证明级数 发散 . 证: 因为 2 ( 1) 1 ( 1) 1 + n n + n 而级数 = = 2 1 k k 发散 根据比较审敛法可知, 所给级数发散 . 例2. 机动 目录 上页 下页 返回 结束

定理3.(比较审敛法的极限形式) 设两正项级数 00 00 ∑4n,∑m满足lm4n=乙,则有 n=1 n=1 n->oo Vn (1)当0≤10,存在N∈Z+,当n>N时, -小水(1 HIGH EDUCATION PRESS 机动目录上页下页返回结束
定理3. (比较审敛法的极限形式) lim l, v u n n n = → 则有 两个级数同时收敛或发散 ; (2) 当 l = 0 (3) 当 l =∞ 证: 据极限定义, 设两正项级数 满足 (1) 当 0 < l <∞ 时, 机动 目录 上页 下页 返回 结束

(l-E)vn≤4n≤(l+e)vn (n>N) 00 (1)当0N),由定理2知 若∑ym收敛,则∑un也收敛: n=l n=1 (3)当1=时,存在NeZ*,当n>N时,”n>1,即 un >Vn oO 由定理2可知,若∑Vm发散,则∑un也发散 n=] n=] HIGH EDUCATION PRESS 机动目 下页返回结束
n n n (l − )v u (l + ) v 由定理 2 可知 n=1 n v 同时收敛或同时发散 ; (n N ) (3) 当l = ∞时, 即 n n u v 由定理2可知, 若 n=1 n v 发散 , (1) 当0 < l <∞时, (2) 当l = 0时, 由定理2 知 n=1 n 若 v 收敛 , 机动 目录 上页 下页 返回 结束
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_1常数项级数.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_6高斯公式.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_4对面积曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_3格林公式.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_2对坐标曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_1对弧长和曲线积分.ppt.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11-5对坐标曲面积分.ppt
- 《高等数学》课程教学资源(课件讲稿)第八章_8-3平面及其方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第八章_8-2数量积、向量积、混合积.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_8-1向量及其线性运算.ppt
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_8极值与最值.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_7方向导数与梯度.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_6几何中的应用.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_5隐函数的求导公式.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_4复合求导.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_3全微分.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_2偏导数.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_1基本概念.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_D8习题课.ppt
- 《高等数学》课程教学资源(课件讲稿)第八章_8-6空间曲线.pdf
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_3幂级数.ppt.ppt
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_4函数展开成幂级数.ppt
- 《高等数学》课程教学资源(课件讲稿)第十二章_D12_7傅立叶级数.pdf
- 《高等数学》课程教学资源(PPT课件)第十章_10_4重积分的应用.ppt
- 《高等数学》课程教学资源(课件讲稿)第十章_D10_1二重积分概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第十章_D10_2二重积分的计算.pdf
- 《高等数学》课程教学资源(PPT课件)第十章_D10_3三重积分.ppt
- 《高等数学》课程教学资源(作业习题)第九章 多元函数微分学及其应用-参考答案.doc
- 《高等数学》课程教学资源(作业习题)第八章 空间解析几何与向量代数——参考答案.doc
- 《高等数学》课程教学资源(作业习题)第十一章 曲线积分曲面积分.doc
- 《高等数学》课程教学资源(作业习题)第十二章 无穷级数.doc
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_1二重积分概念.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_2二重积分的计算.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_3三重积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_4重积分的应用.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_1对弧长的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_2对坐标的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_3格林公式.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_4对面积的曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_5对坐标的曲面积分.ppt