《高等数学》课程教学资源(PPT课件)第十二章_D12_4函数展开成幂级数

第四节 第十二章 离数展开成暴级数 两类问题:在收敛域内 00 幂级数∑anx” 求和 和函数S(x) n=0 展开 本节内容: 一、泰勒(Taylor)级数 二、 函数展开成幂级数 HIGH EDUCATION PRESS 机动目录上页下页返回结束
第四节 两类问题: 在收敛域内 和函数 求 和 展 开 本节内容: 一、泰勒 ( Taylor ) 级数 二、函数展开成幂级数 函数展开成幂级数 机动 目录 上页 下页 返回 结束 第十二章

一、泰勒(Taylor)级数 若函数f(x)在xo的某邻域内具有n+1阶导数,则在 该邻域内有 f(x)=f(o)+f(ox-x)+(x-%o 21 f(x-xo”+R 此式称为f(x)的n阶泰勒公式,其中 R (x)= "5x-为(5在x与之间 (n+1)月 称为拉格朗日余项 HIGH EDUCATION PRESS 下页返回结束
一、泰勒 ( Taylor ) 级数 f (x) = f (x0 ) + f (x0 )(x − x0 ) + 2 0 0 ( ) 2! ( ) x x f x − n n x x n f x ( ) ! ( ) 0 0 ( ) ++ − R (x) + n 其中 Rn (x) = ( 在 x 与 x0 之间) 称为拉格朗日余项 . 1 0 ( 1) ( ) ( 1)! ( ) + + − + n n x x n f 若函数 的某邻域内具有 n + 1 阶导数, 则在 此式称为 f (x) 的 n 阶泰勒公式 , 该邻域内有 : 机动 目录 上页 下页 返回 结束

若函数f(x)在x的某邻域内具有任意阶导数,则称 f)+/x,-)+T"o(x-月 2 ++mw-oP+ 为f(x)的泰勒级数. 当x=0时,泰勒级数又称为麦克劳林级数 待解决的问题: 1)对此级数,它的收敛域是什么? 2)在收敛域上,和函数是否为f(x)? HIGH EDUCATION PRESS 机动目录上页下页返回结束
f (x0 ) + f (x0 )(x − x0 ) + 2 0 0 ( ) 2! ( ) x x f x − ++ − n + n x x n f x ( ) ! ( ) 0 0 ( ) 为f (x) 的泰勒级数 . 则称 当x0 = 0 时, 泰勒级数又称为麦克劳林级数 . 1) 对此级数, 它的收敛域是什么 ? 2) 在收敛域上 , 和函数是否为 f (x) ? 待解决的问题 : 若函数 的某邻域内具有任意阶导数, 机动 目录 上页 下页 返回 结束

定理1.设函数f(x)在点x的某一邻域U(xo)内具有 各阶导数,则f(x)在该邻域内能展开成泰勒级数的充要 条件是f(x)的泰勒公式中的余项满足:limR,(x)=0. -,U n->oo f(x)=p,(x)+R,(x) limR()=im[f(x)-p,(]=0 xU() n→0 HIGH EDUCATION PRESS 机动目 下页返回结束
定理1 . 各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要 条件是 f (x) 的泰勒公式中的余项满足: lim ( ) = 0. → R x n n 证明: ( ) , ! ( ) ( ) 0 0 0 ( ) n n n x x n f x f x = − = 令 ( ) ( ) ( ) n n f x p x R x = + = → lim R (x) n n lim ( ) ( ) n n f x p x → − = 0 , ( ) 0 x x ( ) 0 0 0 ( ) ( ) ( ) ! n k k n k f x p x x x = k = − ( ) 0 x x 设函数 f (x) 在点 x0 的某一邻域 内具有 机动 目录 上页 下页 返回 结束

定理2.若f(x)能展成x的幂级数,则这种展开式是 唯一的,且与它的麦克劳林级数相同 即: )(-RR) =f0+0z*o)x*+/0)x+ x∈(-R,R) HIGH EDUCATION PRESS 机动目录上页下页返回结束
定理2. 若 f (x) 能展成 x 的幂级数, 则这种展开式是 唯一的 , 且与它的麦克劳林级数相同. 即: 机动 目录 上页 下页 返回 结束

二、 函数展开成幂级数 直接展开法一 利用泰勒公式 展开方法 间接展开法一 利用已知其级数展开式 的函数展开 1.直接展开法 由泰勒级数理论可知,函数f(x)展开成幂级数的步 骤如下: 第一步求函数及其各阶导数在x=0处的值; 第二步写出麦克劳林级数,并求出其收敛半径R; 第三步判别在收区间(-R,R)内lim R(x)是否为 n→o0 0. HIGH EDUCATION PRESS 机动目 上页下页返回结束
二、函数展开成幂级数 1. 直接展开法 由泰勒级数理论可知, 函数 f (x)展开成幂级数的步 第一步 求函数及其各阶导数在 x = 0 处的值 ; 第二步 写出麦克劳林级数 , 并求出其收敛半径 R ; 第三步 判别在收敛区间(-R, R) 内 lim R (x) n n→ 是否为 骤如下 : 展开方法 直接展开法 — 利用泰勒公式 间接展开法 — 利用已知其级数展开式 0. 的函数展开 机动 目录 上页 下页 返回 结束

例1.将函数f(x)=ex展开成x的幂级数 解:fm(x)=e,fm(0)=1(n=0,1,),故得级数 1+x 十. n 其收敛半径为 R lim =十00 n>0 n (n+1) 对任何有限数x,其余项满足 n+l 0 (n+1) (5在0与x之间) 故e=1+x+2X+ +.,x∈(-0,十00) HIGH EDUCATION PRESS 机动目录上页下页返回结束
例1. 将函数 展开成 x 的幂级数. 解: ( ) , (n) x f x = e (0) 1 ( 0,1, ), f (n) = n = 1 其收敛半径为 对任何有限数 x , 其余项满足 e (n +1)! n+1 x x e 故 , ! 1 3! 1 2! 1 1 x = + + 2 + 3 ++ x n + n e x x x → = n R lim ! 1 n ( 1)! 1 n + n → ( 在0与x 之间) + x 2 2! 1 + x 3 3! 1 + x ++ x n + n! 1 故得级数 机动 目录 上页 下页 返回 结束

例2.将f(x)=sinx展开成x的幂级数 解:fm(x)=sin(x+n·) ro-c.02刘 n=2k (k=0,1,2,.) 得级数X-引3x-+(-1)22m1+ 其收敛半径为R=+∞,对任何有限数x,其余项满足 sin(+(n+1)) n+ Rn(x)= n+ n→o (n+1)! (n+1)! snx=x-x3+x3-.+(-1)- 2n-1 (2n-1)x X∈(-00,+00 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例2. 将 展开成 x 的幂级数. 解: ( ) = ( ) f x n (0) = (n) f 得级数: x 其收敛半径为 R = +, 对任何有限数 x , 其余项满足 sin( ( 1) ) 2 + n + (n +1)! n+1 x n = 2 k +1 (k = 0,1, 2, ) 3 3! 1 − x + −+ 5 5! 1 x (−1) n−1 (2n 1 −1)! x 2n−1 + sin x n → n = 2k ( 1) , k − 0 , = x − 3 1 ! x 3 + 5 1 ! x 5 −+ (−1) n−1 (2n 1 −1)! x 2n−1 + 机动 目录 上页 下页 返回 结束

x2m-1+ (2n-1)川 x∈(-0,十00) 类似可推出: (2n)川 x∈(-0,+0】 HIGH EDUCATION PRESS 机动目录上页下页返回结束
= − + −+ − n− x n + n x x x 2 4 1 2 (2 )! 1 ( 1) 4! 1 2! 1 cos 1 类似可推出: + − = − + − + − 3 5 −1 2 −1 (2 1)! 1 ( 1) 5! 1 3! 1 sin n n x n x x x x 机动 目录 上页 下页 返回 结束

例3.将函数∫(x)=1+x)m展开成x的幂级数,其中m 为任意常数 解:易求出f(0)=1,f'(0)=m,f"(0)=m(m-1), fm(0)=m(m-1)(m-2)(m-n+1),. 于是得级数 1+x+ m(m-Dx 21 m(m-1).(m-n+1) n! 由于R=liman=lim n+1 =1 n-→oan+1 n-→om-n 因此对任意常数m,级数在开区间(-1,1)内收敛 》HIGH EDUCATION PRESS 机动目录上页下页返回结束
例3. 将函数 展开成 x 的幂级数, 其中m 为任意常数 . 解: 易求出 f (0) =1, f (0) = m, f (0) = m(m −1) , f (n) (0) = m(m −1)(m − 2)(m − n +1) , 于是得级数 1+ mx + + − 2 2! ( 1) x m m 由于 1 lim → + = n n n a a R m n n n − + = → 1 lim =1 + − − + + n x n m m m n ! ( 1) ( 1) 因此对任意常数 m, 级数在开区间 (-1, 1) 内收敛. 机动 目录 上页 下页 返回 结束
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_3幂级数.ppt.ppt
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_2数项级数及审敛法.ppt.ppt
- 《高等数学》课程教学资源(PPT课件)第十二章_D12_1常数项级数.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_6高斯公式.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_4对面积曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_3格林公式.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_2对坐标曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11_1对弧长和曲线积分.ppt.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章_D11-5对坐标曲面积分.ppt
- 《高等数学》课程教学资源(课件讲稿)第八章_8-3平面及其方程.pdf
- 《高等数学》课程教学资源(课件讲稿)第八章_8-2数量积、向量积、混合积.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_8-1向量及其线性运算.ppt
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_8极值与最值.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_7方向导数与梯度.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_6几何中的应用.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_5隐函数的求导公式.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_4复合求导.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_3全微分.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_2偏导数.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_1基本概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第十二章_D12_7傅立叶级数.pdf
- 《高等数学》课程教学资源(PPT课件)第十章_10_4重积分的应用.ppt
- 《高等数学》课程教学资源(课件讲稿)第十章_D10_1二重积分概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第十章_D10_2二重积分的计算.pdf
- 《高等数学》课程教学资源(PPT课件)第十章_D10_3三重积分.ppt
- 《高等数学》课程教学资源(作业习题)第九章 多元函数微分学及其应用-参考答案.doc
- 《高等数学》课程教学资源(作业习题)第八章 空间解析几何与向量代数——参考答案.doc
- 《高等数学》课程教学资源(作业习题)第十一章 曲线积分曲面积分.doc
- 《高等数学》课程教学资源(作业习题)第十二章 无穷级数.doc
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_1二重积分概念.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_2二重积分的计算.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_3三重积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D10_4重积分的应用.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_1对弧长的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_2对坐标的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_3格林公式.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_4对面积的曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_5对坐标的曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_6高斯公式.ppt
- 《高等数学》课程教学资源(PPT课件)Ⅱ_D11_7斯托克斯公式.ppt