复旦大学:《数学分析》精品课程教学资源(习题全解)第五章 微分中值定理及其应用 5.2 L'Hospital法则

习题5.2L'Hospital法则1.对于lim [() = +0 或 -00a+ g(x)的情况证明L'Hospital法则。证设lim=+0, 则vG>0,35>0,Vxe(a,a+),>G+1。+ g'(x)g(x)首先考虑 limf(x)=limg(x)=0的情况,补充定义f(0)=g(0)=0,则f(x),g(x)在[a,dj连续,满足Cauchy中值定理条件。当xe(a,a+)时f(α)_(x)-f(a)_L()>G, a<5<x<a+8,g(x)g(x)-g(a)g'()所以lim [(a)0X-→a+ g(x)再考虑limg(x)=的情况,任取x(a,a+),再取0<<x-a,使得当xe(a,a+)时,max(g()≤,于是由2g(x)g(x)f(xo)I() =[1- g(x0)j()- (x0) g(x)(s)+(x0)=[1_ 4g(x)g(x)g(x)g(s)g(x)g(x) g(x)-g(xo)可得当xe(a,a+)时1._Gf(x)1-(G+1)-22g(x)所以(x)limOOr-→a+ g(x)109
习 题 5.2 L'Hospital 法则 ⒈ 对于 ( ) lim ( ) x a f x → + g x ′ = +∞ − ∞ ′ 或 的情况证明 L'Hospital 法则。 证 设 ( ) lim ( ) x a f x → + g x ′ = +∞ ′ ,则 '( ) 0, 0, ( , ), 1 '( ) f x G x a a g x ∀ > ∃δ > ∀ ∈ +δ > G + 。 首先考虑 lim ( ) lim ( ) = 0的情况,补充定义 , x a x a f x g x → + → + = f g (0) = (0) = 0 则 f x( ), g(x)在[ , a d ]连续,满足 Cauchy 中值定理条件。当 x a ∈( , a +δ )时 ( ) ( ) ( ) '( ) , ( ) ( ) ( ) '( ) f x f x f a f G a x a g x g x g a g ξ ξ δ ξ − = = > < < < − + , 所以 ( ) lim ( ) x a f x → + g x = +∞ 。 再考虑 lim ( ) 的情况,任取 x a g x → + = ∞ 0 x a ∈( , a +δ ),再取 1 0 0 < < δ x − a, 使得当 1 x a ∈( ,a +δ )时, 0 0 ( ) ( ) 1 max{| |,| |} ( ) ( ) 2 g x f x g x g x ≤ ,于是由 0 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) '( ) ( ) [1 ] [1 ] ( ) ( ) ( ) ( ) ( ) ( ) '( ) ( ) f x g x f x f x f x g x f f x g x g x g x g x g x g x g g x ξ 0 ξ − = − + = − + − , 可得当 1 x a ∈( ,a +δ )时 ( ) 1 1 | | ( 1) ( ) 2 2 2 f x G G g x ≥ + − = , 所以 ( ) lim ( ) x a f x → + g x = +∞ 。 109

f'(x)-的情况即为lim=)lim==+oo,所以L'Hospital法则也r-→a+ g'(x)r→a+ g'(x)成立。2.求下列极限:sin3xer-e-x(1) lim(2) lim=r→# tan5xsinx0xm-amIn(sin x)lim(3) lim(4)x→axn-an(元-2x)2tan3xIn(tan 7x)(6) lim(5) limtanxr-→0+ In(tan 2x)In(1 + x2)In(1 + )lim(7)(8)lim-cosxx-→0secx-r-→+ arccotx(9) lim(10)limn.xCsinxx-xtanx-sinx(2) lim(1) limx41Inx→x->0-(13) limxcot2x;(14)limx2er;x->0x→0(2X(15) lim(元 - x)tan =(16) lim-arctanxPX→不(元(17)(18) limllimx→0+1(20) lim x1)(19) limlrx→1x→0+e'-(-e-)2e'-e-解(1)lim=lim=21x-→0sinxX-→0cosx3sin3x3cos3x-3(2)lim=lim5.→5sec25x5x-→ tan 5xcotx-cscxIn(sinx)(3)limlim=lim80三(元-2x)21-2(元-2x)(-2)-4(-2)XA110
( ) lim ( ) x a f x → + g x ′ = −∞ ′ 的情况即为 ( ) lim ( ) x a f x → + g x − ′ = +∞ ′ ,所以 L'Hospital 法则也 成立。 ⒉ 求下列极限: ⑴ lim e e x sin x x → x − − 0 ; ⑵ x x x tan 5 sin 3 lim →π ; ⑶ lim ln(sin ) ( ) x x →π π − x 2 2 2 ; ⑷ lim x a m m n n x a → x a − − ; ⑸ ln(tan 2 ) ln(tan 7 ) lim 0 x x x→ + ; ⑹ x x x tan tan 3 lim 2 π → ; ⑺ x x x arccot ln(1 ) lim 1 + →+∞ ; ⑻ lim ln( ) x sec cos x → x x + 0 − 2 1 ; ⑼ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − → 1 1 ln 1 limx 1 x x ; ⑽ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − x→ x x 1 sin 1 lim 0 ; ⑾ lim x ln x → x − 1 1 ; ⑿ 2 4 0 tan sin limx x x x → x − ; ⒀ x x x lim cot 2 →0 ; ⒁ lim e x x x →0 2 1 2 ; ⒂ 2 lim( )tan x x x − → π π ; ⒃ x x x⎟ ⎠ ⎞ ⎜ ⎝ ⎛ →+∞ arc tan 2 lim π ; ⒄ x x x tan 0 1 lim ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ → + ; ⒅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − → e 1 1 1 lim 0 x x x ; ⒆ x x x sin 0 1 lim ln ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ → + ; ⒇ lim x x x → − 1 1 1 . 解 (1) 0 0 e e e ( e ) 2 lim lim 2 sin cos 1 x x x x x x x x − − → → − − − = = = 。 (2) 2 sin 3 3cos3 3 3 lim lim x x tan 5 5sec 5 5 5 x x → → π π x x − = = = − 。 (3) 2 2 2 2 2 ln(sin ) cot csc 1 lim lim lim x x ( 2 ) 2( 2 )( 2) x 4( 2) 8 x x x x π π π π π → → → − = = − − − − − x = − 。 110

mxm-!-α"xmmmm-(4)-lim= lim=lim-a nx"-1x-ax"-a"nx-ancot7xsec2 7x-7In(tan 7x)7sin2xcos2xlim(5)lim= limr=0+cot2xsec2?2x-2x-0+ In(tan 2x)x-0+2sin7xcos7x28cos4x7sin4x= lim= lim=1 ox→0+2sin14xx→0+28cos14x3元sin=tan3xsin 3x1cosx2-sinx(6)limlim-limSsin-3sin3xcos3xtanxsinx-x-222In(1 + ↓)[In(1+x)"- (In x)"(7)limlim1r-++ arccot xr-→+o1+x21+x2= lim(-1-x2= limx+1x++o x(1+ x)x2xIn(1 +x°)1+x(8)limlimr0 sec.x-cosxx-→0secxtan x+sinx2cos"xx=1.2= lim=11+x21+cosx2x-→>0sinx11x-1-lnxx(9)= lim= limlimx-1iInxx-1x-1 (x-1)Inxx→1Inxx1x-11= lim= lim120Inx+1+1x-1xlnx+x-1x->111x-sinxx(10)limlimx2x→0x-olsinx4sinx-cOSxsinx.1= lim=lim=0。2x2→0x-01x-1(11)lim=lim-=1oHInxx→1xx tanx-sin’xtan xx-sinxcosx(12)=limlimlimx4x3x→0x→0x-→0x111
(4) 1 1 lim lim lim m m m m n n n n x a x a x a x a mx m x x a nx n − − → → − → − = = − = m n a n m − 。 (5) 2 2 0 0 ln(tan 7 ) cot 7 sec 7 7 lim lim x x ln(tan 2 ) cot 2 sec 2 2 x x x → + x → + x x ⋅ = ⋅ 0 7sin 2 cos 2 limx 2sin 7 cos 7 x x → + x x = 0 0 7sin 4 28cos 4 lim lim 1 x x 2sin14 28cos14 x x → + x → + x = = = 。 (6) 2 2 2 3 sin tan 3 sin 3 cos sin 1 2 lim lim lim tan sin cos3 3sin 3 3 sin 2 x x x x x x x x x x x π π π π → → π → − = ⋅ = ⋅ = − 。 (7) 1 2 ln(1 ) [ln(1 )]' (ln )' lim lim arc cot 1 1 x x x x x x x →+∞ →+∞ + + − = − + 2 2 1 1 1 lim ( 1 )[ ] lim 1 x x 1 (1 x x →+∞ x x →+∞ x x + = − − − = = + + ) 。 (8) 2 2 0 0 2 ln(1 ) 1 lim lim x x sec cos sec tan sin x x x → → x x x x + + = − + x 2 2 2 0 2 cos 1 lim 1 2 1 x sin 1 1 cos 2 x x → x x x = ⋅ ⋅ = ⋅ ⋅ + + = 。 (9) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − → 1 1 ln 1 lim x 1 x x 1 1 1 1 1 ln lim lim ( 1)ln 1 ln x x x x x x x x x x → → − − − = = − − + 1 1 1 1 lim lim x x ln 1 ln 1 1 2 x 1 → → x x x x − = = + − + + = 。 (10) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − x→ x x 1 sin 1 lim 0 2 0 sin limx sin x x x → x x ⎛ ⎞ − ⎛ = ⋅ ⎜ ⎟ ⎜ ⎝ ⎠ ⎝ ⎞ ⎟ ⎠ 0 0 1 cos sin lim 1 lim 0 x x 2 2 x x → → x ⎛ ⎞ − = ⋅ ⎜ ⎟ = ⎝ ⎠ = 。 (11)lim x ln x → x − 1 1 1 1 lim 1 x 1 x → = = 。 (12) 2 4 0 tan sin limx x x x → x − 3 0 0 sin cos tan lim lim x x x x x x → → x x − = ⋅ 111

2sinx21-cos’x+sin’xtanx=lim=lim-lim1.03x23x23X-0-→04x-→0x(13)limxcot2x=limlimcos2x=limx0sin2x2x->0x-02cos2x1e'e(14) lim x2ex = lim= lim=+00。y-→+o 1x-→0y+o y-1(元-x)xx(15)lim(元-x)tan= lim-1=2。=limlimsin2012m2--→→X→r2I0arctanx)r(2元(16)lim In=arctanxlim=1-X→+0X→+0(元x11-x?221+ x?= lim arctanxlim11+x2元元X→+00T所以22lim-arctanxF元-一-lnxsinx(17)limInlim= lim= lim=0=x→0+r-→0+cotxx→0+→0+ (-CSc2 x)中x所以lime-1e-1-x(18)= limlim=lime'-x→0 x(e'-1)r-0 e"-1+xe"Xer11= lim= lim-.2x-0 2e'+xerx→0 2 + x1In(-In x)(-ln x)(-x)(19)lim InlimlimInIx→0+x→0+cscxX-→0+ (-CSc x)(cot x)112
2 2 2 2 2 0 0 0 1 cos sin tan 2sin 2 lim lim lim 1 x x 3 3 x x x x x → → x x → x − + = ⋅ = 3 ⋅ = 。 (13) x x x lim cot 2 →0 0 0 0 1 1 lim limcos 2 lim 1 x x sin 2 x 2cos 2 2 x x → → x → x = ⋅ = ⋅ = 。 (14)lim e x x x →0 2 1 2 e e lim lim 1 y y y y →+∞ y →+∞ = = = +∞。 (15) 2 lim( )tan x x x − → π π ( ) 1 lim limsin lim 1 2 2 1 cos sin 2 2 x x x x x π π x x π 2 π → → → − − = ⋅ = ⋅ − = 。 (16) 2 ln arctan 2 lim ln arctan lim 1 x x x x x x π →+∞ π →+∞ ⎛ ⎞ ⎜ ⎟ ⎛ ⎞ ⎝ ⎠ ⎜ ⎟ = ⎝ ⎠ 2 2 2 2 1 1 arctan 1 2 2 lim lim x x 1 1 x x x x x →+∞ π →+∞ π ⋅ + − = = + − = − , 所以 x x x⎟ ⎠ ⎞ ⎜ ⎝ ⎛ →+∞ arc tan 2 lim π = π 2 − e 。 (17) tan 0 0 1 ln lim ln lim cot x x x x → + x → + x ⎛ ⎞ − ⎜ ⎟ = ⎝ ⎠ 2 2 0 0 1 ( ) sin lim lim 0 ( csc ) x x x x → + x → + x − = = = − , 所以 x x x tan 0 1 lim ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ → + =1。 (18) 0 0 1 1 e 1 lim lim e 1 (e 1) x x x x x x → → x x ⎛ ⎞ − − ⎜ ⎟ − = ⎝ ⎠ − − 0 e 1 lim e 1 e x x x x→ x − = − + , 0 0 e 1 lim lim 2e e 2 2 x x x x x → → x x = = + + 1 = 。 (19) sin 0 0 1 ln( ln ) lim ln ln lim csc x x x x → + x → + x ⎛ ⎞ − ⎜ ⎟ = ⎝ ⎠ 112 0 1 ( ln )( ) lim ( csc )(cot ) x x x → + x x − − = −

sinxtanx(tanx)'tanxx0.(lim= limlim= lim(= 0)-InxInx(lnx)'10+cOsxx-→04+xx→0+x-→0+所以1111Inxx(20)limln(xl-x)=lim=lim-一X-11-xx→1 (-1)所以limxl-rx-→13.说明不能用L'Hospital法则求下列极限:x+sinxx?sintlim(1) lim(2) 1-+ox-sinxsinx(x2 +1)sinxsin号x+e2x(4) lim(3) lim>i In(1 + sin 号x)xx-→1d1.1xsin-2xsin-COS-dx(xxX极限不存在,所以解(1)因为当x→0时,dcosx-sinxdxx? sin1不能用L'Hospital法则求极限。limsinx-0x'sin!x事实上,)·lim(xsin少)=1.0=0,极限存在。lim=lim(sinxx-o sinxr-→0X-→0,(x+sinx)=1+cos极限不存在,所以imx+sinx(2)因为当x→+时,(x-sinx)"1-cosxx-sinx不能用L'Hospital法则求极限。I+ sin xx+sinxT事实上,极限存在。limlim=1,sinxx-sin xx113
2 0 0 0 0 sin tan tan (tan )' lim( )( ) 0, (lim lim lim 0) ln ln (ln )' cos x x x x x x x x x → + x x → + x → + x → + x = − = = = = 所以 sin 0 0 1 lim ln 1 x x e → + x ⎛ ⎞ ⎜ ⎟ = = ⎝ ⎠ 。 (20) 1 1 1 1 ln limln( ) lim 1 x x x x x x − → → = − 1 1 lim 1 ( 1) x x → = = − − , 所以 1 1 1 lim x x x − → = −1 e 。 ⒊ 说明不能用 L'Hospital 法则求下列极限: ⑴ lim sin x sin x x →0 x 2 1 ; ⑵ lim sin x sin x x →+∞ x x + − ; ⑶ lim ( )sin x ln( sin ) x x → x + 1 + 2 2 1 1 π ; ⑷ lim sin e x x x → x + 1 2 π 2 . 解(1)因为当 x → 0时, 2 1 1 1 sin 2 sin cos cos sin d x x dx x x d x x dx ⎛ ⎞ ⎜ ⎟ − ⎝ ⎠ = x 极限不存在,所以 lim sin x sin x x →0 x 2 1 不能用 L'Hospital 法则求极限。 事实上, 2 1 1 0 0 0 sin lim lim( ) lim( sin ) 1 0 0 sin sin x x x x x x x x → → x x → = ⋅ = ⋅ = ,极限存在。 (2)因为当 x → +∞时,( ) sin ' 1 cos ( sin )' 1 cos x x x x x + + = − − x 极限不存在,所以 lim sin x sin x x →+∞ x x + − 不能用 L'Hospital 法则求极限。 事实上, sin 1 sin lim lim 1 sin sin 1 x x x x x x x x x x →+∞ →+∞ + + = − − = ,极限存在。 113

(r+1)snx不是%型或二型的待定型,所以不能用L'Hospital(3)limiIn(1+sin号x)080lim(x +1)sin x2sin1(x +I)sinx法则求极限。事实上,limIn2iIn(1+sinx)lim In(1+ sin 号 x)x-1sin号x+e2x不是%型或=型的待定型,所以不能用 L'Hospital(4)limx0r-→180lim(sin号x+e2*)singx+e2x1+e?法则求极限。事实上,=1+e?。limxlimx1x-→1x→14.设g(x)x+0,f(x):x0,x=0其中g(0)=0,g(0)=0,g"(0)=10。求f(0)。解 F(0)= lim(x)-(0)g(x)g(x)-g(0)1g(x)-limlimlim28(0)=5。x-02x2(x-0)x->0x-→0X>0S5.讨论函数(1 + x):x>0,f(x)x≤0,在x=0处的连续性。解显然函数f(x)在x=0处左连续。下面考虑f(x)在x=0处的右连续性。当x>0时,1[In(1+ x)n(+In(1+x)-xIn f(x)=lnex2exxxL于是114
(3)lim ( )sin x ln( sin ) x x → x + 1 + 2 2 1 1 π 不是 0 0 型或 ∗ ∞ 型的待定型,所以不能用 L'Hospital 法则求极限。事实上, 2 2 1 1 2 2 1 lim( 1)sin ( 1)sin 2sin1 lim ln(1 sin ) limln(1 sin ) ln 2 x x x x x x x x x π π → → → + + = = + + 。 (4)lim sin e x x x → x + 1 2 π 2 不是 0 0 型或 ∗ ∞ 型的待定型,所以不能用 L'Hospital 法则求极限。事实上, 2 2 2 2 2 1 2 1 1 lim(sin e ) sin e 1 e lim 1 e lim 1 x x x x x x x x x π π → → → + + + = = = + 。 ⒋ 设 f x g x x x x ( ) ( ) , , , = ≠ = ⎧ ⎨ ⎪ ⎩ ⎪ 0 0 0 其中 g( ) 0 = 0 , g′( ) 0 = 0, g′′( ) 0 = 10。求 f ′(0)。 解 2 0 0 0 0 ( ) (0) ( ) '( ) '( ) '(0) 1 '(0) lim lim lim lim ''(0) 5 x x 0 x 2 x 2( 0) 2 f x f g x g x g x g f g → → x x → x → x − − = = = = = − − = 。 ⒌ 讨论函数 ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ≤ > ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ + = − e , 0, , 0, e (1 ) ( ) 2 1 1 1 x x x f x x x 在 x = 0处的连续性。 解 显然函数 f x( ) 在 x = 0处左连续。下面考虑 f x( ) 在 x = 0处的右连续 性。当 x > 0时, 1 2 1 (1 ) 1 ln(1 ) ln(1 ) ln ( ) ln ln x x x x f x e xex x x + + ⎡ ⎤ + = = − = ⎢ ⎥ ⎣ ⎦ − x , 于是 114

11/In(1+x)-x1+x= lim -lim In f(x)= lim-limx22x2x→0+x→0+x→0+X→0+ 2(1 + x)由对数函数的连续性,limf(x)=e2=f(0),即f(x)在x=0处右连续。所以f(x)在x=0处连续。6.设函数f(x)满足f(0)=0,且f(O)存在,证明limx/(x)=1。[() - _() (xIn x) = f (0) 0 = 0 ,证lim In xf(x) = lim[f(x)In x]= limx-0r-0-0所以lim x/(n)=e°=1。7.设函数f(x)在(a,+o0)上可导,且lim[f(x)+f(x)=k,证明lim f(x)= k 。e'f() = lim e'f(x)+e'f'()= lim[(x)+ f'(x)] = k。 lim f(x)= lim e证ererox→+ot115
2 0 0 0 0 1 1 ln(1 ) 1 1 1 lim ln ( ) lim lim lim 2 2(1 ) x x x x x x x f x → + → + xxx → + → + − + − + = = = − = − + 2 , 由对数函数的连续性, 1 2 0 lim ( ) (0) x f x e f − → + = = ,即 f x( )在 x = 0处右连续。 所以 f (x)在 x = 0处连续。 6.设函数 f (x)满足 f (0) = 0,且 f ′(0)存在, 证明x lim →0+ x f ( x) = 1。 证 ( ) 0 0 0 ( ) (0) lim ln lim[ ( )ln ] lim ( ln ) '(0) 0 0 0 f x x x x f x f x f x x x x f → + → + → + x ⎡ ⎤ − = = ⋅ = ⎢ ⎥ ⎣ ⎦ − ⋅ = , 所以 ( ) 0 0 lim 1 f x x x e → + = = 。 7.设函数 f (x)在(a,+∞)上可导,且 f x f x k x + ′ = →+∞ lim[ ( ) ( )] ,证明 f x k x = →+∞ lim ( ) 。 证 = →+∞ lim f (x) x ( ) ( ) '( ) lim lim x x x x x x x e f x e f x e f x →+∞ e e →+∞ + = = f x f x k x + ′ = →+∞ lim[ ( ) ( )] 。 115
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第五章 微分中值定理及其应用 5.1 微分中值定理.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第四章 微分 4.5 高阶导数和高阶微分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第四章 微分 4.4 复合函数求导法则及其应用.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第四章 微分 4.3 导数四则运算和反函数求导法则.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第四章 微分 4.1 微分和导数 4.2 导数的意义和性质.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第三章 函数极限与连续函数 3.3 无穷小量与无穷大量的阶 3.4 闭区间上的连续函数.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第三章 函数极限与连续函数 3.1 函数极限 3.2 连续函数.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第二章 数列极限 2.3 无穷大量 2.4 收敛准则.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第二章 数列极限 2.1 实数系的连续性 2.2 数列极限.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第一章 集合与映射 1.1 集合 1.2 映射与函数.pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十六(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十六(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十五(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十五(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十四(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十四(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十三(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十三(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十二(解答).pdf
- 复旦大学:《数学分析》精品课程教学资源(练习题)习题十二(题目).pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第五章 微分中值定理及其应用 5.3 Taylor公式和插值多项式.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第五章 微分中值定理及其应用 5.4 函数的Taylor公式及其应用.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第五章 微分中值定理及其应用 5.5 应用举例.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第六章 不定积分 6.1 不定积分的概念和运算法则.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第六章 不定积分 6.2 换元积分法和分部积分法.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第六章 不定积分 6.3 有理函数的不定积分及其应用.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.1 定积分的概念和可积条件.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.2 定积分的基本性质.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.3 微积分基本定理.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.4 定积分在几何中的应用.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.5 微积分实际应用举例.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第八章 反常积分 8.1 反常积分的概念和计算.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第八章 反常积分 8.2 反常积分的收敛判别法.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第九章 数项级数 9.1 数项级数的收敛性 9.2 上极限与下极限.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第九章 数项级数 9. 3 正项级数.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第九章 数项级数 9.4 任意项级数 9. 5 无穷乘积.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十章 函数项级数 10. 1 函数项级数的一致收敛性.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十章 函数项级数 10.2 一致收敛级数的判别与性质.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十章 函数项级数 10. 3 幂级数.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十章 函数项级数 10. 4 函数的幂级数展开 10. 5 用多项式逼近连续函数.pdf
