中国高校课件下载中心 》 教学资源 》 大学文库

复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.5 微积分实际应用举例

文档信息
资源类别:文库
文档格式:PDF
文档页数:6
文件大小:81.23KB
团购合买:点击进入团购
内容简介
复旦大学:《数学分析》精品课程教学资源(习题全解)第七章 定积分 7.5 微积分实际应用举例
刷新页面文档预览

习题7.51.一根10m长的轴,密度分布为p(x)=(0.3x+6)kg/m(0≤x≤10),求轴的质量。解m=。(0.3x+6)dx=75(kg),即轴的质量为75kg。2.已知抛物线状电缆y=x2(-1≤x≤1)上的任一点处的电荷线密度与该点到轴的距离成正比,在(11)处的密度为q,求此电缆上的总电量。解Q=gV1+4dx=(+4x)=(5/5-1)g,即此电缆上的总电10量为(5/5-1)g。63.水库的闸门是一个等腰梯形,上底36m,下底24m,高16m,水平面距上底4m,求闸门所受到的水压力(水的密度为1000kg/m2)。解以梯形的上底为y轴,从上底的中点垂直向下为x轴正向,则水下离水面距离为x处,高度为dx的一段闸门一侧所受的水压力为dF =1000g(4+x)24+ (16-x)dxA于是闸门所受的总的水压力为P-0l+ + - -4 0 ,4.一个弹簧满足圆柱螺线方程x=acost,y=asint,t>0(a>0,b>0),z= bt,其上任一点处的密度与它到Oxy平面的距离成正比,试求其第一247

习 题 7.5 ⒈ 一根 10m 长的轴,密度分布为 ρ( ) x = (0.3x + 6) kg/m(0 ≤ ≤ x 10), 求轴的质量。 解 (kg),即轴的质量为 75kg。 10 0 m x = + (0.3 6)dx = 75 ∫ ⒉ 已知抛物线状电缆 y = x 2 (−1 ≤ x ≤ 1)上的任一点处的电荷线密 度与该点到 轴的距离成正比,在 处的密度为 q,求此电缆上 的总电量。 y ( , 11) 解 3 1 2 2 2 1 1 0 1 1 1 4 (1 4 ) (5 5 1) 6 6 Q q x x dx q x q − = + = + = − ∫ ,即此电缆上的总电 量为 1 (5 5 1) 6 − q。 ⒊ 水库的闸门是一个等腰梯形,上底 36m,下底 24m,高 16m,水 平面距上底 4m,求闸门所受到的水压力(水的密度为 1000kg/m3 )。 解 以梯形的上底为 y 轴,从上底的中点垂直向下为 x轴正向,则水 下离水面距离为 x处,高度为dx的一段闸门一侧所受的水压力为 3 1000 (4 ) 24 (16 ) 4 dF g x x dx ⎡ ⎤ = + + − ⎢ ⎥ ⎣ ⎦ , 于是闸门所受的总的水压力为 16 7 0 3 1000 (4 ) 24 (16 ) 5.4 10 4 Fgx x dx ⎡ ⎤ = + + − ≈ ⎢ ⎥ ⎣ ⎦ ∫ × (N)。 ⒋ 一个弹簧满足圆柱螺线方程 x a t y a t z bt = = = ⎧ ⎨ ⎪ ⎩ ⎪ cos , sin , , t > 0(a > 0,b > 0), 其上任一点处的密度与它到 Oxy 平面的距离成正比,试求其第一 247

圈的质量。解质量m=JkbtVa?+bdt=2kb/a+b2元2。5.一个圆柱形水池半径10m,高30m,内有一半的水,求将水全部抽干所要做的功。解W=Jx.10°g·元10°dx=1.04x10()。6.半径为r的球恰好没于水中,球的密度为p,现在要将球吊出水面,最少要做多少功?解考虑对水下离水面距离为x处,厚度为dx的圆形薄片的做功情况:半径为r的球恰好离开水面,则圆形薄片的位移恰为2r,其在水中移动的距离为x,在水上移动的距离为2r-x。薄片的面积为(2rx-x)元,设p为水的密度,则将球恰好吊出水面至少要做的功为W = pg元 f"(2r- x)(2rx-x*)dx +(p-Po)g元 f" x(2rx-x*)dx=1mrg(2p-Po)。37.半径为r密度为p的球壳以角速度の绕其直径旋转,求它的动能解W=110"=0*=%0(21-x)2a/2mx-x/1+y"d2-J p(2rx-x)2元V2rx--r-V2JV2rx-x4= po'r元 J"(2rx-x")dx=gor8.使某个自由长度为1m的弹簧伸长2.5cm需费力15N,现将它从1.1m拉至1.2m,问要做多少功?解由F=kx,当x=0.025m时,F=15N,代入得k=600。于是所做的功为248

圈的质量。 解 质量 2 2 2 2 2 0 m kbt a b dt 2kb a b π 2 = + = + π ∫ 。 ⒌ 一个圆柱形水池半径 10m,高 30m,内有一半的水,求将水全部 抽干所要做的功。 解 (J)。 30 3 2 15 W x = ⋅10 g ⋅π10 dx =1.04×10 ∫ 9 ⒍ 半径为r 的球恰好没于水中,球的密度为ρ,现在要将球吊出水 面,最少要做多少功? 解 考虑对水下离水面距离为 x处,厚度为dx的圆形薄片的做功情 况:半径为r 的球恰好离开水面,则圆形薄片的位移恰为2r ,其在水 中移动的距离为 x,在水上移动的距离为2r − x。薄片的面积为 2 (2rx − x )π ,设 ρ 0 为水的密度,则将球恰好吊出水面至少要做的功为 ∫ ∫ = − − + − − r r W g r x rx x dx g x rx x dx 2 0 2 0 2 0 2 ρ π (2 )(2 ) (ρ ρ ) π (2 ) (2 ) 3 4 0 4 = πr g ρ − ρ 。 ⒎ 半径为r 密度为ρ的球壳以角速度ω绕其直径旋转,求它的动能。 解 = = 2 2 1 W Iω 2 2 2 2 0 (2 )2 2 1 2 r rx x rx x y dx ω ρ π 2 − − + ′ ∫ = 2 2 2 2 0 2 (2 )2 2 2 2 r r rx x rx x dx rx x ω ρ π − − − ∫ 2 2 2 0 4 (2 ) 3 r = − ρω r r π x x dx = πρω ∫ 2 4 r 。 ⒏ 使某个自由长度为 1m 的弹簧伸长 2.5cm 需费力 15N,现将它从 1.1m 拉至 1.2m,问要做多少功? 解 由F = kx,当 x = 0.025m 时,F = 15N,代入得 k = 600。于是所做 的功为 248

W = Jo, kadx= 9J.9.一物体的运动规律为s=3t3-t,介质的阻力与速度的平方成正比,求物体从1=1运动至t=T时阻力所做的功。解设介质的阻力为F,速度v=s'=9t2-1,则F=k(9t2-1)2。于是-[ra-or-1a--or--35°10.半径为1m,高为2m的直立的圆柱形容器中充满水,拔去底部的一个半径为1cm的塞子后水开始流出,试导出水面高度h随时间变化的规律,并求水完全流空所需的时间。(水面比出水口高h时,出水速度v=0.6×/2gh。)解设t时刻水面的高度为h,过了dt时间后水面的高度降低了dh,则元1dh=-元(0.01)°vdt=-元(0.01)×0.6/2ghdt,即崇=-6x10~ 2gdl Vh对上式两边积分,注意t=0时,h=2,得到h=2(1-3x10-5 /gt)2,以h=0代入,解得1=10=1.06x104(s)。3/g11.上题中的圆柱形容器改为何种旋转体容器,才能使水流出时水面高度下降是匀速的。解根据题意,只要在上题的第一个等式的左边含有因子h即可,也即在时刻t水面的半径r须满足r2=k/h,其中k为常数。所以可选用249

0.2 0.1 W = = kxdx 9 ∫ J。 ⒐ 一物体的运动规律为 s = 3t − t 3 ,介质的阻力与速度的平方成正 比,求物体从t = 1运动至t = T 时阻力所做的功。 解 设介质的阻力为 F ,速度v = s′ = 9t 2 −1,则 F = k(9t 2 −1) 2。于是 35 2224 9 5 243 7 729 (9 1) 7 5 3 1 2 3 1 = ′ = − = − + − − ∫ ∫ W Fs dt t dt T T T T T T 。 ⒑ 半径为 1m,高为 2m 的直立的圆柱形容器中充满水,拔去底部 的一个半径为 1cm 的塞子后水开始流出,试导出水面高度 随时 间变化的规律,并求水完全流空所需的时间。(水面比出水口高 时,出水速度 h h v g = × 0 6. 2 h 。) 解 设t时刻水面的高度为h,过了dt 时间后水面的高度降低了dh,则 1 dh (0.01) vdt (0.01) 0.6 2ghdt 2 2 2 π = −π = −π × , 即 gdt h dh 6 10 2 −5 = − × 。 对上式两边积分,注意t = 0时,h = 2,得到 5 2 h 2(1 3 10 gt) − = − × , 以h = 0代入,解得 5 10 4 1.06 10 3 t g = = × (s)。 ⒒ 上题中的圆柱形容器改为何种旋转体容器,才能使水流出时水面 高度下降是匀速的。 解 根据题意,只要在上题的第一个等式的左边含有因子 h 即可,也 即在时刻t水面的半径r 须满足 2 r k = h ,其中k 为常数。所以可选用 249

曲线y=cx*绕y轴旋转一周后所得旋转曲面作为容器,从而使得水流出时水面高度下降是匀速的。12.镭的衰变速度与它的现存量成正比,设t时有镭9.g,经1600年它的量减少了一半,求镭的衰变规律。解设在时刻t镭的现存量为Q=Q(t),则dQ=-kQ,dt对等式两边积分,注意在时刻t。有镭9.g,得到Q(t) = Qge-k(t=0) 。由题意,当1-1。=1600时,Q(1)=号,代入上式,得到k=2,所以16002Q = Q. 2 1600 。13.将A物质转化为B物质的化学反应速度与B物质的浓度成反比,设反应开始时有B物质20%,半小时后有B物质25%,求B物质的浓度的变化规律。解设在时刻t,B物质的浓度为y(t),则dy_k,di"y解得y=V2kt+c。1k=9,所以c=-因为y(0)=,于是得到2540014 = V18 +16.2014.设[t,t+di]中的人口增长量与pmax-p(t)成正比,试导出相应的人口模型,画出人口变化情况的草图并与Malthus和Verhulst人口模250

曲线 y = cx 4 绕 y 轴旋转一周后所得旋转曲面作为容器,从而使得水流 出时水面高度下降是匀速的。 ⒓ 镭的衰变速度与它的现存量成正比,设t 时有镭 g,经 1600 年 它的量减少了一半,求镭的衰变规律。 0 Q0 解 设在时刻t镭的现存量为Q = Q(t),则 kQ dt dQ = − , 对等式两边积分,注意在时刻t 有镭Q g,得到 0 0 ( ) 0 0 ( ) k t t Q t Q e − = = 。 由题意,当t − t0 = 1600时, 2 ( ) Q0 Q t = ,代入上式,得到 1600 ln 2 k = ,所以 1600 0 0 2 t t Q Q − − = 。 ⒔ 将 A 物质转化为 B 物质的化学反应速度与 B 物质的浓度成反比, 设反应开始时有 B 物质 20%,半小时后有 B 物质 25%,求 B 物 质的浓度的变化规律。 解 设在时刻t,B 物质的浓度为 y(t) , 则 y k dt dy = , 解得 y = 2kt + c 。 因为 5 1 y(0) = , 4 1 ) 2 1 y( = ,所以 400 9 , 25 1 c = k = ,于是得到 20 18 +16 = t y 。 ⒕ 设[t,t + dt]中的人口增长量与 pmax − p t( )成正比,试导出相应的人 口模型,画出人口变化情况的草图并与 Malthus 和 Verhulst 人口模 250

型加以比较。解由题意可知dp(0) = k(Pax- p(), p(lo)= Po,dt由此可解得p(t) = Pmx -(Pmx - o)e*k(-0)。Malthus人口模型Verhulst人口模型15.核反应堆中,t时刻中子的增加速度与当时的数量N(t)成正比。设N(O)=N。,证明[e] -[e]。1证由题意可知N= kN,dt对等式两边积分,再注意N(O)=N。,可解得251

型加以比较。 解 由题意可知 max ( ) ( ( )) dp t k p p t dt = − 0 0 , p( ) t = p , 由此可解得 0 ( max max 0 ( ) ( ) k t t p t p p p e− − = − − ) 。 ⒖ 核反应堆中, 时刻中子的增加速度与当时的数量 成正比。 设 ,证明 t N t( ) N( ) 0 = N0 [ ] 1 0 2 ( ) t N N t [ ] 2 0 1 ( ) t N N t = 。 证 由题意可知 kN dt dN = , 对等式两边积分,再注意 N( ) 0 = N0 ,可解得 251

N(t)=Noekt,由此即可得到N(t2)2)=e:=(NC)N.N16.一个1000m的大厅中的空气内含有a%的废气,现以1m/min注入新鲜空气,混合后的空气又以同样的速率排出,求t时刻空气内含有的废气浓度,并求使废气浓度减少一半所需的时间。解设在时刻t空气内含有的废气浓度为y(t),则1ady= --100(0)dt, J(0)=100解此方程,即得到ae1000J(t) = -100当y()=%时,有eloo=2,从而得到t=1000ln2(min),即废200气浓度减少一半所需的时间为1000ln2(min)。252

k t N t N e0 ( ) = , 由此即可得到 2 1 2 1 0 1 0 2 ( ) ( ) t k t t t N N t e N N t ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 。 ⒗ 一个 1000m3 的大厅中的空气内含有a %的废气,现以 1m3 /min 注入新鲜空气,混合后的空气又以同样的速率排出,求 时刻空 气内含有的废气浓度,并求使废气浓度减少一半所需的时间。 t 解 设在时刻t 空气内含有的废气浓度为 y(t),则 1 ( ) 1000 dy = − y t dt , (0) 100 a y = , 解此方程,即得到 1000 100 ( ) t e a y t − = 。 当 ( ) 200 a y t = 时,有 1000 2 t e = ,从而得到 t =1000ln 2(min),即废 气浓度减少一半所需的时间为 1000ln 2(min)。 252

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档