《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.1 预备知识、向量的内积

§1预备知识向量的内积
§1 预备知识 向量的内积

解析几何中,R3中非零向量,B的内积定义为 a·B=aB cos0 这里lB分别表示与B的长度,0表示 与B夹角。 类似的,可将3维向量空间中的内积概念推广到n维 向量空间
解析几何中, 中非零向量 的内积定义为 这里 分别表示 的长度, 表示 夹角。 类似的,可将 3 维向量空间中的内积概念推广到 n 维 向量空间。 3 R , = cos 与 与

一、向量的内积、长度与夹角 定义1设有n维向量 X2 y2 x= y= V. [x,y]=x1y+x2y2++xnyn 称[x,y]为向量x与y的内积
定义1 设有n维向量, , 2 1 2 1 = = n n y y y y x x x x n n x y = x y + x y ++ x y 1 1 2 2 令 , 称x, y为向量x与 y的 内积 . 一、向量的内积、长度与夹角

说明 1n(n≥4)维向量的内积是3维向量数量积 的推广,但是没有3维向量直观的几何意义. 2内积是向量的一种运算,如果x,y都是列 向量,内积可用矩阵记号表示为: [x,y]=x"y
说明 1 维向量的内积是3维向量数量积 的推广,但是没有3维向量直观的几何意义. n(n 4) , . , : 2 , , x y x y x y T = 向量 内积可用矩阵记号表示为 内积是向量的一种运算 如果 都是列

内积的运算性质 其中x,y,z为n维向量,为实数): (1)[x,y]=[y,x} (2)[2x,y]=2[x,y] 3)[x+y,z]=[x,z]+[y,z小5 (4)x,x]≥0,且当x≠0时有[x,x]>0
内积的运算性质 (其中x, y,z为n维向量,为实数): (1) x, y = y, x; (2) x, y = x, y; (3) x + y,z = x,z + y,z; (4)[x, x] 0,且当x 0时有[x, x] 0

定义2令 =Vx,x]=Vx好+x++x, 称x为n维向量x的长度(或范数) 向量的长度具有下述性质: 1.非负性当x≠0时,x>0;当x=0时,x=0; 2.齐次性2x=2x9 3.三角不等式x+y≤+外
定义2 1.非负性 2.齐次性 3.三角不等式 , , 2 2 2 2 x = x x = x1 + x ++ xn 令 称 x 为n维向量x的 长度 (或 范数 ). 向量的长度具有下述性质: 当x 0时, x 0;当x = 0时, x = 0; x = x ; x + y x + y

单位向量及n维向量间的夹角 (1)当x=1时,称x为单位向量. (2)当x≠0,y≠0时,0=arccos [x,y] y 称为n维向量x与y的夹角. 例1求向量=(1,0,1)'与B=(0,0,1)'的夹角. 解· c0s0= a·B _1√2 -al-V212 π .0= 4
单位向量及n维向量间的夹角 求向量 ( ) 与 ( ) 的夹角. T T 例 1 = 1,0,1 = 0,0,1 解 cos = 2 2 2 1 1 = = . 4 = (1)当 x = 1时,称x为 单位向量 . ( ) x y x y x y , 2 当 0, 0时, = arccos 称为n维向量x与y的 夹角

二、正交向量组的概念及求法 1正交的概念 当xy=0时,称向量x与y正交 由定义知若x=0,则x与任何向量都正交 正交向量组的概念 2 若一非零向量组中的向量两两正交,则称该向 量组为正交向量组
2 正交向量组的概念 1 正交的概念 当[x, y] = 0时,称向量x与y 正交 . 由定义知,若 x = 0,则 x与任何向量都正交. 若一非零向量组中的向量两两正交,则称该向 量组为正交向量组. 二、正交向量组的概念及求法

3正交向量组的性质 定理1若n维向量1,2,.,x,是一组两两正交的 非零向量,则ac1,a心2,.,a,线性无关. 证明 设有入1,2,.,几,使 入01+入0C2+.+九0.=0 以aT左乘上式两端得21c1a1=0 由a&1≠0→a1a1=12≠0,从而有21=0. 同理可得人2=.=九,=0.故41,2,.,C,线性无关
0 0, 2 1 1 1 = 1 T 由 0 . 从而有1 = 0. 同理可得2 = = r = , , , . 故1 2 r线性无关 证明 设有 1 ,2 , ,r 使 1 1 +2 2 ++ r = 0 以a1 T左乘上式两端,得 11 1 = 0 T 3 正交向量组的性质 非零向量,则 , , , 线性无关. 定 理 若 维向量 , , , 是一组两两正交的 r n r 1 2 1 2 1

例2已知三维向量空间中两个向量 正交,试求a,使a,a2,0构成三维空间的一个正 交向量组 解设a3=(1,2,x3≠0,且分别与a1,a2正交. 则有[a1,c3】=[a2,a3l=0
例2 已知三维向量空间中两个向量 − = = 1 2 1 1 1 2 1 2 , 正交,试求 使 构成三维空间的一个正 交向量组. 3 1 2 3 , , ( , , ) 0, , . 设 3 = 1 2 3 且分别与1 2正交 T 解 x x x 则有 [1 , 3 ] = [ 2 , 3 ] = 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.3 相似矩阵 5.4 对称矩阵的对角化.ppt
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.2 方阵的特征值与特征向量.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.1 向量组及其线性相关性.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.4 向量空间.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.2 向量组的线性相关性.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.3 向量组的秩.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.4 矩阵分块法.ppt
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.1 矩阵的初等变换.ppt
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.2 矩阵的秩.ppt
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.3 线性方程组的解.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.3 逆矩阵.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.2 矩阵的运算.ppt
- 《线性代数》课程教学资源(PPT课件)第一章 行列式.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.1 矩阵.ppt
- 《线性代数》课程教学资源(试卷习题)线性代数作业册(习题).pdf
- 《线性代数》课程教学资源(试卷习题)线性代数作业册(部分答案).pdf
- 《线性代数》课程教学资源(试卷习题)2008-2009学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2009-2010学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2009-2010学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2008-2009学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型5.5 二次型及其标准形(含第五章复习).ppt
- 《线性代数》课程教学大纲 Linear Algebra(A).doc
- 《线性代数》课程教学资源(疑难解答)第二章 矩阵及其运算.doc
- 《线性代数》课程教学资源(疑难解答)第三章 矩阵的初等变换与线性方程组、第四章 向量组的线性相关性.doc
- 《线性代数》课程教学资源(疑难解答)第五章 相似矩阵及二次型.doc
- 《线性代数》课程教学资源(教案讲义)第一章 行列式.doc
- 《线性代数》课程教学资源(教案讲义)第二章 矩阵及其运算.doc
- 《线性代数》课程教学资源(教案讲义)第四章 向量组的线性相关性.doc
- 《线性代数》课程教学资源(教案讲义)第五章 相似矩阵与二次型.doc
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-6 阶行列式按行(列)展开.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-5 阶行列式的性质.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-7 n阶行列式.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-2 全排列及其逆序数.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-3 n阶行列式.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-4 对换.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式(习题课).ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-1 二阶与三阶行列式.ppt
- 《线性代数》课程教学课件(PPT讲稿)第二章 矩阵及其运算 2-3 逆矩阵.ppt
- 《线性代数》课程教学课件(PPT讲稿)第二章 矩阵及其运算 2-4 矩阵分块法.ppt
- 《线性代数》课程教学课件(PPT讲稿)第二章 矩阵及其运算 2-1 矩阵.ppt