《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.4 矩阵分块法

矩阵及其适算 第四节 矩阵分块法 一、矩阵的分块 分块矩阵的运算法则 三、小结思考题 带助式

矩阵的分块 对于行数和列数较高的矩阵A,为了 简化运算,经常采用分块法,使大矩阵的 运算化成小矩阵的运算.具体做法是:将 矩阵A用若干条纵线和横线分成许多个小 矩阵,每一个小矩阵称为A的子块,以子 块为元素的形式上的矩阵称为分块矩阵. 上页
一、矩阵的分块 对于行数和列数较高的矩阵 ,为了 简化运算,经常采用分块法,使大矩阵的 运算化成小矩阵的运算. 具体做法是:将 矩阵 用若干条纵线和横线分成许多个小 矩阵,每一个小矩阵称为 的子块,以子 块为元素的形式上的矩阵称为分块矩阵. A A A

a 10 0 0 0 0 例 A- 0 1 b BB B 011 a 1 00 即 A- 0a00 BBB 011b 上页 区回
, 321 = BBB = b b a a A 0 1 1 1 0 1 0 0 0 1 0 0 例 A = a 1 0 0b a 0 1 1 0 0 0 0 1 1 b = B 1 B 2 B 3 即

a 1 0 0 王二二二二二二二王王二 0 0 A= 1 0 b 1 8 0 1 b 1 0 0 即 4- 0 0 b 001 9 0
= b b a a A 0 1 1 1 0 1 0 0 0 1 0 0 , 3 4 1 2 = C C C C = A = a 1 C1 0 0 C2 0 1 1 0 0 a C3 b b 1 1 0 0 C4 即

1 0 0 0 0 A- 1 任日wG9 0 A- 010 1a01 00b1 071.b. -(4 上页 回
, = E B A O ( ), = A1 A2 A3 A4 = b b a a A 0 1 1 1 0 1 0 0 0 1 0 0 = b b a a A 0 1 1 1 0 1 0 0 0 1 0 0 = a a A 0 1 其中 = b b B 1 1 = 0 1 1 0 E = 0 0 0 0 O = 0 1 0 1 a 其中A = 1 0 1 2 a A = 1 0 0 3 b A = b A 1 0 0 4

二、分块矩阵的运算规则 主王二二二二二干十二二二二 (1)设矩阵A与B的行数相同,列数相同,采用 相同的分块法,有 4 4= 其中A,与B,的行数相同,列数相同,那末 4+B. Aur+Bu 4+B= 人A1+B1A,+B
( ) 相同的分块法 有 设矩阵 与 的行数相同 列数相同 采用 , 1 A B , , 其中Aij与Bij的行数相同,列数相同,那末 . 1 1 1 1 1 1 1 1 + + + + + = s s sr sr r r A B A B A B A B A B 二、分块矩阵的运算规则 = = s sr r s sr r B B B B B A A A A A 1 1 1 1 1 1 1 1

A1 (2)设A= ,为数,那末 A A 2A1 2A= 14. 上页 这回
(2)设 , 为数,那末 1 1 1 1 = s sr r A A A A A . 1 1 1 1 = s sr r A A A A A

例 =2,A= 13 225 1 6 1×2 2×23×2 2A= 3×2 2×2 1×2 4×2 5×2 6×2 4 4 = 6 4 62 10 12 上页
例 = 4 5 6 3 2 1 1 2 3 = 2, A 2 2 2 2 2 2 2 2 2 = 4 5 6 3 2 1 1 2 3 2 A . 8 10 12 6 4 2 4 4 6 =

(3)设A为m×矩阵,B为l×n矩阵,分块成 B11 A= B 其中A1,A2,.,A的列数分别等于B,B,.,B, 的行数,那末 其中Cg=方4B为=l,s=1, 上页 区回
(3)设A为ml矩阵,B为l n矩阵,分块成 , , 1 1 1 1 1 1 1 1 = = t tr r s st t B B B B B A A A A A 1 2 1 2 , , , , , , , 其中A A A B B B i i it j j tj 的列数分别等于 的行数 那末 = s sr r C C C C AB 1 11 1 ( 1, , ; 1, , ). 1 C A B i s j r k j t k i j = i k = = = 其 中

.0 (5)设A为n阶矩阵,若A的分块矩阵只有在主对角线 上有非零子块,其余子块都为零矩阵,且非零子块都 是方阵即 A2 A=
( ) 是方阵即 上有非零子块 其余子块都为零矩阵 且非零子块都 设 为 阶矩阵 若 的分块矩阵只有在主对角线 . , , 5 A n , A , 2 1 = As A A A O O (4) , 1 1 = Asr A A 设 A1r As1 . 11 = T sr T T A A A 则 T As1 T A1r T As1 T A1r . 11 = T sr T T A A A 则
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.1 矩阵的初等变换.ppt
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.2 矩阵的秩.ppt
- 《线性代数》课程教学资源(PPT课件)第三章 矩阵的初等变换及线性方程组 3.3 线性方程组的解.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.3 逆矩阵.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.2 矩阵的运算.ppt
- 《线性代数》课程教学资源(PPT课件)第一章 行列式.ppt
- 《线性代数》课程教学资源(PPT课件)第二章 矩阵及其运算 2.1 矩阵.ppt
- 《线性代数》课程教学资源(试卷习题)线性代数作业册(习题).pdf
- 《线性代数》课程教学资源(试卷习题)线性代数作业册(部分答案).pdf
- 《线性代数》课程教学资源(试卷习题)2008-2009学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2009-2010学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2009-2010学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2008-2009学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2007-2008学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2006-2007学年第二学期考试(试题).pdf
- 《线性代数》课程教学资源(试卷习题)2006-2007学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2007-2008学年第二学期考试(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2015-2016学年第二学期线代A卷(答案).pdf
- 《线性代数》课程教学资源(试卷习题)2015-2016学年第二学期线代A卷(试题).pdf
- 《线性代数》课程授课教案(讲义)第二章 矩阵及其运算.pdf
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.3 向量组的秩.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.2 向量组的线性相关性.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.4 向量空间.ppt
- 《线性代数》课程教学资源(PPT课件)第四章 向量组及其线性组合 4.1 向量组及其线性相关性.ppt
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.2 方阵的特征值与特征向量.ppt
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.3 相似矩阵 5.4 对称矩阵的对角化.ppt
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型 5.1 预备知识、向量的内积.ppt
- 《线性代数》课程教学资源(PPT课件)第五章 相似矩阵及二次型5.5 二次型及其标准形(含第五章复习).ppt
- 《线性代数》课程教学大纲 Linear Algebra(A).doc
- 《线性代数》课程教学资源(疑难解答)第二章 矩阵及其运算.doc
- 《线性代数》课程教学资源(疑难解答)第三章 矩阵的初等变换与线性方程组、第四章 向量组的线性相关性.doc
- 《线性代数》课程教学资源(疑难解答)第五章 相似矩阵及二次型.doc
- 《线性代数》课程教学资源(教案讲义)第一章 行列式.doc
- 《线性代数》课程教学资源(教案讲义)第二章 矩阵及其运算.doc
- 《线性代数》课程教学资源(教案讲义)第四章 向量组的线性相关性.doc
- 《线性代数》课程教学资源(教案讲义)第五章 相似矩阵与二次型.doc
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-6 阶行列式按行(列)展开.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-5 阶行列式的性质.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-7 n阶行列式.ppt
- 《线性代数》课程教学课件(PPT讲稿)第一章 行列式 1-2 全排列及其逆序数.ppt