《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念 第五节条件概率

概率伦与敖理统外 第五节 条件概率 一、条件概率 二、乘法定理 三、全概率公式与贝叶斯公式
一、条件概率 二、乘法定理 三、全概率公式与贝叶斯公式 第五节 条件概率

概奉论与散理统计「 一、条件概率 引例 两台车床加工同一种机械零件,如下表: 正品数 次品数 合计 35 5 40 Ⅲ 50 10 60 总计 85 15 100 从中任取一件,若取到第一台加工的零件, 求此零件是正品的概率
引例 两台车床加工同一种机械零件,如下表: 一 、条件概率 正品数 次品数 合计 I 35 5 40 II 50 10 60 总计 85 15 100 从中任取一件,若取到第一台加工的零件, 求此零件是正品的概率

概率论与款理统外 1.定义 设A,B是两个事件,且P(A)>0,称 P(BA)=P(AB) P(A) 为在事件A发生的条件下事件B发生的条件概率. 同理可得 P(AB)=P(AB) P(B) 为事件B发生的条件下事件A发生的条件概率
( ) ( ) ( ) P B P AB 同理可得 P AB 为事件 B 发生的条件下事件 A 发生的条件概率. . ( ) ( ) ( ) , , ( ) 0, 为在事件 发生的条件下事件 发生的条件概率 设 是两个事件 且 称 A B P A P AB P B A A B P A 1. 定义

概奉论与散理统计「 2.性质 (I)非负性:P(BA≥0; (2)规范性:P(SA)=1,P(OA)=0, (3)P(BUB A=P(B A+P(B A)-P(BB.A); (4)P(BA)=1-P(BA) (5)可列可加性:设B1,B2,.是两两不相容的事 件,则有 P084小-2P®
(3) ( ) ( ) ( ) ( ); P B1B2 A P B1 A P B2 A P B1B2 A (4) P(B A) 1 P(B A). (2) 规范性: P(S A) 1, P( A) 0; 件 则有 可列可加性 设 是两两不相容的事 , (5) : , , B1 B2 ( ). 1 1 i i i P Bi A P B A 2. 性质 (1)非负性: P(B A) 0;

概率论与数理统外 例1一个盒子中装有7件产品,包括4件一等品 和3件二等品,从中不放回地取三次,每次取一 件,令A1:第1次取到一等品,=1,2,3 P(A),P(A,A),P(A;A 42)
例1 一个盒子中装有7件产品,包括4件一等品 和3件二等品,从中不放回地取三次,每次取一 件,令 Ai: 第i次取到一等品,i=1,2,3 1 2 1 3 1 2 求 P( A ), P( A A ), P( A A A )

概奉论与散理统计「 二、乘法定理 设P(A)>0,则有P(AB)=P(BA)P(A). 设A,B,C为事件,且P(AB)>0,则有 P(ABC)=P(CAB)P(BA)P(A). 推广设A,A2,.,An为n个事件,n≥2, 且P(A1A,.An-1)>0,则有 P(A1A2.An)=P(AnA1A2.Am-)×1 P(An-4142.An-2)×.×P(A2A)P(A1
( ) ( ) ( ). ( ) ( ) 1 1 2 2 2 1 1 1 2 1 2 1 P A A A A P A A P A P A A A P A A A A n n n n n 且 P(A1A2A n1 ) 0, 则有 , , , , 2, 推广 设 A1 A2 An 为 n 个事件 n 设 A,B,C 为事件,且 P(AB) 0, 则有 P(ABC) P(C AB)P(B A)P(A). 设 P(A) 0, 则有 P(AB) P(B A)P(A). 二、 乘法定理

概率伦与数理统外 例2某种动物由出生算起活20岁以上的概率为 0.8,活到25岁以上的概率为0.4,如果现在有一个 20岁的这种动物,问它能活到25岁以上的概率是 多少? 解设A表示“能活20岁以上”的事件, B表示“能活25岁以上”的事件, 则有 P(BA)= P(AB) P(A) 因为P(A=0.8,P(B)=0.4,P(AB)=P(B), 所以P(BA)=PL1B 0.41 P(A) 0.821
例2 某种动物由出生算起活20岁以上的概率为 0.8, 活到25岁以上的概率为0.4, 如果现在有一个 20岁的这种动物, 问它能活到25岁以上的概率是 多少? 设 A 表示“ 能活 20 岁以上 ” 的事件, B 表示 “ 能活 25 岁以上”的事件, 则有 因为 P(A) 0.8, . ( ) ( ) ( ) P A P AB P B A P(B) 0.4, P(AB) P(B), . 2 1 0.8 0.4 ( ) ( ) ( ) P A P AB 所以 P B A 解

概奉论与散理统计「 抓阄是否与次序有关? 例3六个阄,其中一个阄内写着“有” 字,五个阄内不写字,六人依次抓取, 问各人抓到“有”字阄的概率是否相同 解设A表示“第i人抓到有字阉”的事件, i=1,2,3,4,5,6. 则有 P(A)= 1 6
例3 六个阄, 其中一个阄内写着“有” 字, 五个阄内不写字 ,六人依次抓取, 问各人抓到“有”字阄的概率是否相同? 解 i = 1,2,3,4,5,6. 则有 1 1 ( ) , 6 P A = 抓阄是否与次序有关? 设 A 表示“第 i 人抓到有字阄”的事件 , i

概率伦与敖理统外 P(4)=P(44)=P(A)P(A,A) 511 656 P(A)=P(A44)=P(A)P(44)P(444) 5411 6546 依此类推 4)=4)=4)-G 故抓阄与次序无关
2 P(A )= 1 2 P(A A ) 1 2 1 = P(A )P(A A ) 5 1 1 6 5 6 3 1 2 3 1 2 1 3 1 2 P(A ) = P(A A A ) = P(A )P(A A )P(A A A ) 5 4 1 1 6 5 4 6 依此类推 4 5 6 1 ( ) ( ) ( ) . 6 P A P A P A 故抓阄与次序无关

概奉论与散理统计「 例4设某光学仪器厂制造的透镜,第一次落下时 打破的概率为1/2,若第一次落下未打破,第二次落 下打破的概率为7/10,若前两次落下未打破,第三 次落下打破的概率为9/10.试求透镜落下三次而未 打破的概率. 解以4,(i=1,2,3)表示事件"透镜第i次落下打破", 以B表示事件“透镜落下三次而未打破”· 因为B=A1A2A3, 所以P(B)=P(A1A2A)=P(AAA)P(AA)P(A) =a-8a-0u-2-0
例4 设某光学仪器厂制造的透镜, 第一次落下时 打破的概率为1/2,若第一次落下未打破, 第二次落 下打破的概率为7/10 , 若前两次落下未打破, 第三 次落下打破的概率为9/10.试求透镜落下三次而未 打破的概率. 解 以B 表示事件“透镜落下三次而未打破” . , 因为 B A1 A2 A3 ( ) ( ) 所以 P B P A1 A2 A3 ( ) ( ) ( ) P A3 A1A2 P A2 A1 P A1 ) 2 1 )(1 10 7 )(1 10 9 (1 . 200 3 以A (i 1,2,3)表示事件"透镜第 i 次落下打破" , i
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《概率论与数理统计》课程教学课件(PPT讲稿)第08章 假设检验 8.1 假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第08章 假设检验 8.2 正态总体均值的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第08章 假设检验 8.3 正态总体方差的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第07章 参数估计 7.1 点估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第07章 参数估计 7.3 估计量的评选标准.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第07章 参数估计 7.4 区间估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第07章 参数估计 7.5 正态总体均值与方差的区间估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第07章 参数估计 7.7 单侧置信区间.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第06章 样本及抽样分布 6.1 总体与随机样本.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第06章 样本及抽样分布 6.3 统计量及其分布.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第05章 大数定律及中心极限定理 5.1 大数定律.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第05章 大数定律及中心极限定理 5.2 中心极限定理.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第04章 随机变量的数字特征 4.1 数学期望.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第04章 随机变量的数字特征 4.2 方差.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第04章 随机变量的数字特征 4.3 协方差及相关系数.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第04章 随机变量的数字特征 4.4 矩、协方差矩阵.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第03章 多维随机变量及其分布 3.1 二维随机变量.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第03章 多维随机变量及其分布 3.2 边缘分布.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第03章 多维随机变量及其分布 3.3 条件分布.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿)第03章 多维随机变量及其分布 3.4 相互独立的随机变量.pdf
- 《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念 第四节 等可能概型.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念 第三节频率与概率.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念 第二节样本空间,随机事件.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念 第一节随机试验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第1章 概率论的基本概念_前言.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第2章 随机变量及其分布 第五节 随机变量的函数分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第2章 随机变量及其分布 第四节 连续型随机变量及其概率密度.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第2章 随机变量及其分布 第三节 随机变量的分布函数.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第2章 随机变量及其分布 第二节 离散型随机变量及其分布律.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第2章 随机变量及其分布 第一节随机变量.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第3章 多维随机变量及其分布 第五节 两个随机变量的函数分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第3章 多维随机变量及其分布 第四节 相互独立的随机变量.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第3章 多维随机变量及其分布 第三节 条件分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第3章 多维随机变量及其分布 第二节 边缘分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第3章 多维随机变量及其分布 第一节二维随机变量.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第4章 随机变量的数字特征 第四节矩,协方差矩阵.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第4章 随机变量的数字特征 第三节协方差及相关系数.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第4章 随机变量的数字特征 第二节方差.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第4章 随机变量的数字特征 第一节数学期望.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)第5章 大数定律及中心极限定理 第二节 中心极限定理.ppt