山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-4 矩阵的秩

©上本理工大至 第四节想阵的秩 1.行秩、列秩、矩阵的秩 2.矩阵秩的求法 3.向量组的秩的求法 4.矩阵秩的性质 5.矩阵秩与行列式的关系 上页
1.行秩、列秩、矩阵的秩 2.矩阵秩的求法 3.向量组的秩的求法 4.矩阵秩的性质 5.矩阵秩与行列式的关系

©山本理工大军 1.行秩、列秩、矩阵的秩 定义2.4.1:矩阵的行向量的秩, 就称为矩阵的行秩; 矩阵的列向量的秩,就称为矩阵的列秩。 11 3 02-1 4 例如:矩阵A= 000 5 的行向量组是 000 0 c1=(1,1,3,1) 2=(0,2,-1,4) a3=(0,0,0,5) a4=(0,0,0,0) 上页 返回
1. 行秩、列秩、矩阵的秩 定义2.4.1:矩阵的行向量的秩,就称为矩阵的行秩; 矩阵的列向量的秩,就称为矩阵的列秩。 例如:矩阵 1 1 3 1 0 2 1 4 0 0 0 5 0 0 0 0 A − = 的行向量组是 1 2 3 4 (1,1,3,1) (0,2, 1,4) (0,0,0,5) (0,0,0,0) = = − = =

可以证明,Q1,C2,03是A的行向量组的一个极大无关组, 因为,由k1a1+k2a2+ka3=0 即k(1,1,3,1)+k2(0,2,-1,4)+k(0,0,0,5) =(k1,k1+2k2,3k1-k2,k1+4k2+5k3) =(0,0,0,0) 可知k1=k2=k3=0,即C1,a2,3线性无关; 而4为零向量,包含零向量的向量组线性相关, .C1,02,C3,C4线性相关。 所以向量组Q1,02,03,C4的秩为3, 所以矩阵A的行秩为3
可以证明, 1 2 3 , , 是A的行向量组的一个极大无关组, 因为,由 1 1 2 2 3 3 k k k + + = 0 即 1 2 3 1 1 2 1 2 1 2 3 (1,1,3,1) (0,2, 1,4) (0,0,0,5) ( , 2 ,3 , 4 5 ) (0,0,0,0) k k k k k k k k k k k + − + = + − + + = 可知 1 2 3 k k k === 0, 即 1 2 3 , , 线性无关; 而 4 为零向量,包含零向量的向量组线性相关, 1 2 3 4 , 线性相关。 所以向量组 1 2 3 4 , 的秩为3, 所以矩阵A的行秩为3

©山东理工大军 矩阵A的列向量组是 0 B= ,f2= 20 ,月3= 3-0 ,B= 0 1450 0 可以验证B,P2,B,线性无关, 而且A=2B-2A,+0B 所以向量组B,B2,B3,B4的一个极大无关组是B,B2,B 干所以向量组A,B,R,B的秩是3, 所以A的列秩
矩阵A的列向量组是 1 2 3 4 1 1 3 1 0 2 1 4 , , , 0 0 0 5 0 0 0 0 − = = = = 可以验证 1 2 4 , , 线性无关, 而且 3 1 2 4 7 1 0 2 2 = − + 所以向量组 1 2 3 4 , 的一个极大无关组是 1 2 4 , , 所以向量组 1 2 3 4 , 的秩是3, 所以矩阵A的列秩是3

问题:矩阵的行秩矩阵的列秩 定理2.4.1:矩阵的初等行变换不改变矩阵的行秩。 (列) (列) 1 证:把Amn按行向量表示,Amxon= (1)对换矩阵A的两行 A的行向量组所含向量未变,所以向量组的秩不变, 所以矩阵A的行秩不变。 (2) 用非零常数k乘以A的第行
问题:矩阵的行秩 ? = 矩阵的列秩 定理2.4.1:矩阵的初等行变换不改变矩阵的行秩。 (列) (列) 证:把 A m n 按行向量表示, 1 2 m n m A = ( 1)对换矩阵A的两行 A的行向量组所含向量未变,所以向量组的秩不变, 所以矩阵A的行秩不变。 (2)用非零常数k乘以A的第i行

©山东理工大军 .:. 4= a→ kaj =A2 显然,向量组1,.,kC,.,am 可以由向量组C1).,C,Cm 线性表示; 而向量组01).,C)“,Cm 也可以由向量组a1,.,kC,.,0m线性表示。 所以矩阵A的行向量组与A,的行向量组等价, 又等价的向量组有相同的秩, .A的行秩=A,的行秩,即A的行秩不变 上页 回
1 1 2 i kr i i m m A A k = ⎯⎯→ = 显然,向量组 1 , , , , i m k 可以由向量组 1 , , , , i m 线性表示; 而向量组 1 , , , , i m 也可以由向量组 1 , , , , i m k 线性表示。 所以矩阵 A 的行向量组与 A2 的行向量组等价, 又等价的向量组有相同的秩, A的行秩= A2 的行秩, 即A的行秩不变

©夕东理工大军 (3)非零常数k乘以第行后加到第行上 a 显然,A,中的行向量组 可以由A的行向量组线性表示 a =A3 a;+ka; 而A的行向量组可以由 A中的行向量组线性表示。 m 所以两个向量组等价,所以行向量组的秩不变, 所以矩阵的行秩不变
(3)非零常数k乘以第i行后加到第j行上 1 1 3 j i i i r kr j j i m m A A k + = ⎯⎯⎯→ = + 显然, A3 中的行向量组 可以由 A 的行向量组线性表示 而 A 的行向量组可以由 A3 中的行向量组线性表示。 所以两个向量组等价,所以行向量组的秩不变, 所以矩阵的行秩不变

④少本理工大军 工 定理2.4.2:矩阵的初等行变换不改变矩阵的列向量间的线性关 系。 (列) (行) 举例说明 例1设矩阵 0 列向量组有线性关系44=41+242一43 矩阵A经过有限次初等行变换得到B,则矩阵B的列向 量A,P,B,B,间也有线性关系 B4=B1+2B2-B3 回
定理2.4.2:矩阵的初等行变换不改变矩阵的列向量间的线性关 系。 (列) (行) 举例说明 例1 设矩阵 = − 6 0 2 4 0 2 1 5 1 1 3 0 A 列向量组有线性关系 a4 = a1 + 2a2 − a3 矩阵A经过有限次初等行变换得到B, 则矩阵B的列向 量 2 a 4 a 3 a a1 1 2 3 4 , , , 间也有线性关系 4 = 1 + 2 2 − 3

解:对矩阵A作初等变换如下 11 1 30 4= 30 02-1 10 2 -1 602 4 0 -6 -16 4 11 3 3+3 3 0 2 -1 0 -1 00 -19 0 0 1 -1 1 103) 1 0 3 020 4 0 0 2 001 -1 0 回
解:对矩阵A作初等变换如下 = − 6 0 2 4 0 2 1 5 1 1 3 0 A − − − 0 6 16 4 0 2 1 5 1 1 3 0 r3 6r1 ~ − r3 3r2 ~ + − − 0 0 19 19 0 2 1 5 1 1 3 0 − 19 1 3 r ~ − − 0 0 1 1 0 2 1 5 1 1 3 0 1 3 2 3 r 3r r ~ r − + 0 0 1 − 1 0 2 0 4 1 1 0 3 2 1 r2 ~ 0 0 1 − 1 0 1 0 2 1 1 0 3

©少本理工大军 B B B: O 1 显然 B4=B1+2P2-B3 推论:矩阵的初等行变换不改变矩阵的列秩。 (列) (行) 上页 区回
r1 r2 ~ − 0 0 1 − 1 0 1 0 2 1 0 0 1 1 2 3 4 显然 4 = 1 + 2 2 − 3 推论:矩阵的初等行变换不改变矩阵的列秩。 (列) (行)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-4 克拉默法则.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-3 n阶行列式的计算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-2 行列式的性质.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-1n阶行列式的概念.ppt
- 高等教育出版社:《概率论与数理统计》课程教材书籍PDF电子版(浙江大学第四版,共十四章,编著:盛骤、谢式千、潘承毅).pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第一章 概率论的基本概念.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第二章 随机变量及其分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第三章 多维随机变量及其分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第四章 随机变量的数字特征.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第五章 大数定律和中心极限定理.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第六章 样本及抽样分布.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第八章 假设检验.ppt
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第一节 假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第二节 正态总体均值的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第三节 正态总体方差的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第一节 点估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第三节 估计量的评选标准.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第四节 区间估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第五节 正态总体均值与方差的区间估计.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-3 向量组的线性相关性.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-2 向量及其线性运算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-1 消元法与矩阵初等变换.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-3 初等矩阵.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-2 逆矩阵.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-1 矩阵的运算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-4 分块矩阵.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第四章 线性方程组 第三节 非齐次线性方程组.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第四章 线性方程组 第一节 线性方程组解的判别 第二节 齐次线性方程组.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.3 正态总体方差的假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.2 正态总体均值的假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.1 假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.7 单侧置信区间.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.5 正态总体均值与方差的区间估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.4 区间估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.3 估计量的评选标准.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.1 点估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)6.3 统计量及其分布(简).ppt
- 《概率论与数理统计》课程教学资源(PPT课件)6.1 随机样本.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)5.2 中心极限定理.ppt