山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-4 克拉默法则

@山东理上大 第四节克拉默法则 卫 上页
第四节 克 拉 默 法 则

课前复习余子式与代数余子式 在阶行列式中,把元素所在的第行和第列j 划去后,留下来的n阶行列式叫做元素的余子式, 记作 M前 记A,=(-1)Mp叫做元素的代数余子式. 关于代数余子式的重要性质 含w-暖8 当i=j方 当i≠j 交4-88言 回
课前复习 余子式与代数余子式 记作 . 划去后,留下来的 阶行列式叫做元素 的余子式, ij 在 n 阶行列式中,把元素 a 所在的第 行和第 i 列 j n − 1 ij a Mij( 1) i j A M ij ij + 记 = − , 叫做元素 a 的 ij 代数余子式. 关于代数余子式的重要性质 1 , , 0 , ; n ki kj ij k D i j a A D i j = = = = 当 当 1 , , 0 , ; n ik jk ij k D i j a A D i j = = = = 当 当 1 , 0 , . ij i j i j = = 当 , 当

非齐次与齐次线性方程组的概念 011x1+a12x2+.+41nxn=b1 设线性方程组 21X1+22x2+.+2mn=b2 anx+an2x2++amxn=bn 若常数项勋,b2,.,b不全为零,则称此方程组为非 齐次线性方程组;若常数项b,b2,bn全为零, 此时称方程组为齐次线性方程组 王
+ + + = + + + = + + + = n n nn n n n n n n a x a x a x b a x a x a x b a x a x a x b 1 1 2 2 2 1 1 2 2 2 2 2 1 1 1 1 2 2 1 1 设线性方程组 , , , , 若常数项b1 b2 bn不全为零 则称此方程组为非 齐次线性方程组; , , , , 若常数项b1 b2 bn 全为零 此时称方程组为齐次线性方程组. 非齐次与齐次线性方程组的概念

2、克拉默法则 11火1+012x2++a1nxn=b1 定理如果线性方程组 L21x1+22x2+.+L2mXn=b2 amx1+an2x2++amxn=b 的系数行列式不等于零,即D= 02 ≠0 那么线性方程组有解,并且解可以唯一表示为 x- D
如果线性方程组 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b + + + = + + + = + + + = 的系数行列式不等于零,即 n n nn n n a a a a a a a a a D 1 2 21 22 2 11 12 1 = 0 2、克拉默法则 定理 那么线性方程组有解,并且解可以唯一表示为 1 2 3 1 2 3 , , , , . n n D D D D x x x x D D D D = = = =

其中D,是把系数行列式D中第列的元素用方程 组右端的常数项代替后所得到的n阶行列式,即 b2 :
其中 是把系数行列式 中第 列的元素用方程 组右端的常数项代替后所得到的 阶行列式,即 Dj D j n 11 12 1 1 21 22 2 2 1 2 j n j n n n nj nn a a a a a a a a D a a a a = 1 2 n b b b 1 2 n b b b 1 2 n b b b D12 Dj

@少本T子大¥ 证明 线性方程组 (aux+arx2++ax)Au=b4u (a21k1+a2x2+.+mXn)A1=b2A1 anx+an2x2++amxn)An bnAu 在把n个方程依次相加,得 (au41+a141++0nm4n小x+(2A1+041+.+an2An)x+ +autai++am)=br++An) 既 Dx+0x++0x=D 所以 5(D*) 上页 回
证明 在把 n 个方程依次相加,得 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b + + + = + + + = + + + = 线性方程组 (a x a x a x A b A 11 1 12 2 1 11 1 11 + + + = n n ) (a x a x a x A b A 21 1 22 2 2 21 2 21 + + + = n n ) (a x a x a x A b A n n nn n n n n 1 1 2 2 1 1 + + + = ) ( ) ( ) ( ) ( ) 11 11 21 1 12 11 22 21 2 1 2 1 11 2 21 1 1 11 21 1 1 1 2 21 n n n n nn n n n n n n x a A a A a A x a A a A a A x b A b A b a A A a A a A + + + + + + + + + = + + + + + + 既 ( ) 1 2 1 11 2 21 1 0 0 n n n Dx x x b A b A b + + + = + + + D1 A ( ) 1 1 0 D x D D 所以 =

G心山东理上大¥ 类似线性方程组 (au+apxz++anx)42=b42 (a211+0z2++42mn)A2=b2A22 人ani七1+am2x32+.+0nmxn)A2=bnA2 在把n个方程依次相加,得 (4n42+014nt+0uAa)x+(a242+a42++an4)x+ +(anA4+0nA2+.+0nA2)x.=(b42+b42+.+bn4n2) 既 Ox+Dx,++Ox=D2 所以 ((D≠0)类似可求 X3
类似 在把 n 个方程依次相加,得 11 1 12 2 1 1 21 1 22 2 2 2 1 1 2 2 n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b + + + = + + + = + + + = 线性方程组 (a x a x a x A b A 11 1 12 2 1 12 1 12 + + + = n n ) (a x a x a x A b A 21 1 22 2 2 22 2 22 + + + = n n ) (a x a x a x A b A n n nn n n n n 1 1 2 2 2 2 + + + = ) ( ) ( ) ( ) ( ) 11 12 21 22 1 2 1 2 1 12 2 22 2 12 12 22 22 1 12 2 22 2 2 2 n n n n nn n n n n n n a A a A a A x x a A a A a A x b A b A b A + + + + + a A a A a A + + + + = + + + + + + 既 ( ) 1 2 1 12 2 22 2 0 0 n n n x x x b A A b + + + = + + + D D2 b A ( ) 2 2 0 D x D D 所以 = 类似可求 3 , , . n x x

@山东开上大x 故当D≠0时 D D 证毕。 那么当D=0时 Dx=D,Dx2=D2,Dx3 =D2,Dx=D 方程组还有解吗? 显然当D,≠0时无解;当D,=时无数解 回
. D D , , x D D , x D D , x D D x n = = = n = 2 3 2 2 1 1 1 1 2 2 3 2 , , , , . Dx D Dx D Dx D Dx D = = = = n n 证毕。 故当 D 0 时 那么当 D = 0 时 方程组还有解吗? 显然当 Dj 0 时无解;当 时无数解 0 Dj =

©山东r大¥ 二、 齐次线性方程组的相关定理 411x1+a2x2+.+a1mXn=0 21x1+02X2+.+02mXn=0 (2) ax+a2x2+.+ax=0 定理 如果齐次线性方程组(2的系数行列式 D测齐次线性方程组没有非零解。 上页
二、齐次线性方程组的相关定理 (2) 0 0 0 1 1 2 2 21 1 22 2 2 11 1 12 2 1 + + + = + + + = + + + = n n nn n n n n n a x a x a x a x a x a x a x a x a x 定理 如果齐次线性方程组 的系数行列式 D 则齐次线性方程组 0 没有非零解. (2) (2)

定理 如果齐次线性方程组(2)有非零解,则它 的系数行列式必为零: 系数行列式D=0 11x1+412x2+.+41mXn=0 211+22X2+.+2mXn=0 n1X1+an2x2+.+mxn=0 有非零解, 上页 区回
定理 如果齐次线性方程组 (2) 有非零解,则它 的系数行列式必为零. + + + = + + + = + + + = 0 0 0 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 2 2 1 n n nn n n n n n a x a x a x a x a x a x a x a x a x 有非零解. 系数行列式 D = 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-3 n阶行列式的计算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-2 行列式的性质.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第一章 n阶行列式 1-1n阶行列式的概念.ppt
- 高等教育出版社:《概率论与数理统计》课程教材书籍PDF电子版(浙江大学第四版,共十四章,编著:盛骤、谢式千、潘承毅).pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第一章 概率论的基本概念.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第二章 随机变量及其分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第三章 多维随机变量及其分布.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第四章 随机变量的数字特征.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第五章 大数定律和中心极限定理.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第六章 样本及抽样分布.pdf
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第八章 假设检验.ppt
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第一节 假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第二节 正态总体均值的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第八章 假设检验 第三节 正态总体方差的假设检验.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第一节 点估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第三节 估计量的评选标准.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第四节 区间估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第五节 正态总体均值与方差的区间估计.pdf
- 《概率论与数理统计》课程教学课件(PPT讲稿,48学时)第七章 参数估计 第七节 单侧置信区间.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-4 矩阵的秩.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-3 向量组的线性相关性.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-2 向量及其线性运算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第二章 矩阵与向量 2-1 消元法与矩阵初等变换.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-3 初等矩阵.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-2 逆矩阵.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-1 矩阵的运算.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第三章 矩阵的运算 3-4 分块矩阵.ppt
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第四章 线性方程组 第三节 非齐次线性方程组.pdf
- 山东理工大学:《线性代数》课程教学课件(PPT讲稿)第四章 线性方程组 第一节 线性方程组解的判别 第二节 齐次线性方程组.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.3 正态总体方差的假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.2 正态总体均值的假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)8.1 假设检验.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.7 单侧置信区间.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.5 正态总体均值与方差的区间估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.4 区间估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.3 估计量的评选标准.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)7.1 点估计.ppt
- 《概率论与数理统计》课程教学资源(PPT课件)6.3 统计量及其分布(简).ppt
- 《概率论与数理统计》课程教学资源(PPT课件)6.1 随机样本.ppt