《线性代数》课程教学资源(PPT讲稿,C)3-3初等矩阵

第 三 节 初 等 矩 阵 1 上页
第三节 初 等 矩 阵

课前复习 矩阵的初等变换(Elementary transformation) (c,c): 初等行(列)变换5×k(c:×k); 5+(c+kc,) 2、子式与阶子式 3、秩的定义及性质 in Aun,f(1)3D,≠0;(2)VD+1=0. 则称为矩阵的最高阶非零子式. 最高阶非零子式 的阶数称为矩阵的秩,记为r(或 R(A 上页
2、子式与 k 阶子式 3、秩的定义及性质 课前复习 1、矩阵的初等变换(Elementary transformation) 初等行(列)变换 ( ) ; i j i j r r c c ( ) ; i i r k c k ( ) . i j i j r kr c kc + + , m n in A if 0 ; D r 1 0 . (1) (2) = D r+ 则 称为矩阵 的最高阶非零子式. D r A 记为 r(A或) R. (A) 最高阶非零子式 的阶数称为矩阵的秩

4、如果矩阵A经过有限次初等变换变成矩阵B, 就称矩阵A与B等价,记作A~B 5、利用初等行变换可把矩阵化为行阶梯形矩阵! 利用初等行变换,也可把矩阵化为行最简形矩阵, 利用初等行变换,再利用初等列变换最后可把矩阵 化为标准形矩阵。 最高阶非零子式的阶数 6、矩阵的秩 行阶梯形矩阵非零行的行数 行最简形矩阵非零行的行数 标准形矩阵中单位矩阵的阶数
4、如果矩阵 A 经过有限次初等变换变成矩阵 B , 就称矩阵 A B 与 等价 ,记作 A B~ 利用初等行变换可把矩阵 A 化为行阶梯形矩阵. 利用初等行变换,也可把矩阵化为行最简形矩阵. 5、 利用初等行变换,再利用初等列变换最后可把矩阵 化为标准形矩阵. 6、矩阵的秩 = 最高阶非零子式的阶数 = 行阶梯形矩阵非零行的行数 = 行最简形矩阵非零行的行数 = 标准形矩阵中单位矩阵的阶数

、初等矩阵的概念 矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 定义由单位矩阵E经过一次初等变换得到的方 阵称为初等矩阵.E→P, 三种初等变换对应着三种初等方阵, 1.对调两行或两列; 2.以数k≠0乘某行或某列; 3.以数k乘某行(列)加到另一行(列)上去
定义 由单位矩阵 经过一次初等变换得到的方 阵称为初等矩阵. E 三种初等变换对应着三种初等方阵. 矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 一、初等矩阵的概念 以数 乘某行(列)加到另一行(列)上去. 以数 乘某行或某列; 对调两行或两列; k k 3. 2. 0 1. , ET E P ⎯⎯⎯→ 一次

1、对调两行或两列 对调E中第i,j两行,即(G→),得初等方阵 1 ) E(i,)= (c) (C) 上页
对调 E 中第 i, j 两行,即(ri rj ),得初等方阵 1、对调两行或两列 ( ) 1 1 0 , 0 1 1 E i j = 0 1 1 0 ( )i r ( )j r ( )j ( ) c i c

2 3 1 E,(2,3)A= 123 13 = 为 4 2 1 100 AE,(2,3)= = 上页 返回
1 0 0 0 0 1 0 1 0 1 2 3 2 2 1 3 4 3 1 2 3 3 4 3 2 2 1 = 3 E A (2,3) = 3 AE (2,3) = 1 2 3 2 2 1 3 4 3 1 0 0 0 0 1 0 1 0 1 3 2 2 1 2 3 3 4 =

用m阶初等矩阵Enm(i,j)左乘A=(a)nxn,得 相当于对矩阵A施行第一种初等行变换: 把A的第i行与第j行对调(→) L11 12 n 02. m ←-第i行 Em(i,j)A= 几 ai2 L 第j行
用m 阶初等矩阵Em (i, j) 左乘 A = (aij)mn,得 = m m mn i i in j j jn n m a a a a a a a a a a a a E i j A 1 2 1 2 1 2 1 1 1 2 1 ( , ) 第 i 行 第 j 行 ( ). i j A i j r r A 把 的第 行与第 行对调 相当于对矩阵 施行第一种初等行变换:

类似地, 以n阶初等矩阵En(i,j)右乘矩阵A, 相当于对矩阵A施行第一种初等列变换: 把A的第i列与第j列对调(c,)c): 1 (Ti n AE,(i,j)= 区回
以 阶初等矩阵 右乘矩阵 , 类似地, n En (i, j) A = m mj mi mn j i n j i n n a a a a a a a a a a a a AE i j 1 2 1 2 2 2 1 1 1 1 1 ( , ) ( ). i j A i j c c A 把 的第 列与第 列对调 相当于对矩阵 施行第一种初等列变换:

2、以数k≠0乘某行或某列 以数k≠0乘单位矩阵的第行(y×k),得初等 矩阵E(i(k) E(i(k))= ←第i行 上页
2、以数 k 0 乘某行或某列 ( ( )). 0 ( ) E i k k i ri k 矩阵 以数 乘单位矩阵的第 行 ,得初等 = 1 1 1 1 ( ( )) E i k k 第 i 行

1 0 0 i (i(k))A= 0 0 0 0 i ka: Ami 上页 返回
11 1 1 1 1 i n i ii in m mi mn a a a ka ka ka a a a ( ( )) E i k A m = 0 0 1 0 0 1 0 0 k m mi mn i i i i n i n a a a a a a a a a 1 1 11 1 1 =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《线性代数》课程教学资源(PPT讲稿,C)3-4分块矩阵.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)3-5习题课.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)4-1线性方程组.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)4-2齐次线性方程组.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)4-3非齐次线性方程组.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)5-1向量的内积.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)5-2方阵的特征值与特征向量.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)5-3相似矩阵.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)5-4实对称矩阵的相似对角形.ppt
- 《线性代数》课程教学课件(讲稿,B)第四章 线性方程组 §4.1 线性方程组的解的判别.pdf
- 《线性代数》课程教学课件(讲稿,B)§4.2 齐次线性方程组.pdf
- 《线性代数》课程教学课件(讲稿,B)§4.3 非齐次线性方程组.pdf
- 《线性代数》课程教学课件(讲稿,B)第三章 矩阵的运算 §3.1矩阵的运算.pdf
- 《线性代数》课程教学课件(讲稿,B)§3.2 逆矩阵.pdf
- 《线性代数》课程教学课件(讲稿,B)§3.3 初等矩阵.pdf
- 《线性代数》课程教学课件(讲稿,B)§3.4 分块矩阵.pdf
- 《线性代数》课程教学课件(讲稿,B)第二章 矩阵与向量 §2.1消元法与矩阵的初等变换.pdf
- 《线性代数》课程教学课件(讲稿,B)向量及其线性运算.pdf
- 《线性代数》课程教学课件(讲稿,B)向量组的线性相关性.pdf
- 《线性代数》课程教学课件(讲稿,B)矩阵的秩.pdf
- 《线性代数》课程教学资源(PPT讲稿,C)3-2逆矩阵.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)3-1矩阵的运算.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)2-4矩阵的秩.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)2-3向量组的线性相关性.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)2-2向量及其线性运算.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)2-1矩阵的初等变换.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)1-5习题课.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)1-4克拉默法则.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)1-3行列式的计算.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)1-1行列式的定义.ppt
- 《线性代数》课程教学资源(PPT讲稿,C)1-2行列式的性质.ppt
- 《概率论与数理统计》课程教学课件(习题课,PPT)第三章 多维随机变量及其分布.ppt
- 《概率论与数理统计》课程教学课件(习题课,PPT)第二章 随机变量及其分布.ppt
- 《概率论与数理统计》课程教学资源(概率论复习要点)第四章 随机变量的数字特征、第五章 大数定律及中心极限定理.doc
- 《概率论与数理统计》课程教学资源(概率论复习要点)第三章 多维随机变量及其概率分布.doc
- 《概率论与数理统计》课程教学资源(概率论复习要点)第二章 随机变量与概率分布.doc
- 《概率论与数理统计》课程教学资源(概率论复习要点)第一章 随机事件与概率.doc
- 《概率论与数理统计》课程教学资源(参考资料)概率的起源与发展.ppt
- 《高等数学》课程教学资源(PPT课件)第八章向量代数与空间解析几何_第八章目录.ppt
- 《高等数学》课程教学资源(PPT课件)第八章向量代数与空间解析几何_第八章习题课.ppt