《高等数学》课程教学资源(PPT课件)8.4空间直线及其方程

第四节 第八章 空间直线及其方程 空间直线方程 二、线面间的位置关系 HIGH EDUCATION PRESS 机动目录上页下页返回结束
第四节 一、空间直线方程 二、线面间的位置关系 机动 目录 上页 下页 返回 结束 空间直线及其方程 第八章

一、 空间直线一般方程 直线可视为两平面交线,因此其一般式方程 A1x+B1y+C12+D1=0 Ax+B2y+C2z+D2=0 (不唯一) HIGH EDUCATION PRESS 机动目录上页下页返回结束
一、空间直线一般方程 x y z o 0 A1 x + B1 y +C1 z + D1 = 1 2 L 直线可视为两平面交线,因此其一般式方程 (不唯一) 机动 目录 上页 下页 返回 结束

二、空间直线对称式方程与参数式方程 已知直线上一点M(x0,y0,0)和它的方向向量 3=(m,n,p),设直线上的动点为M(x,y,z) 则 MoM//5 M(x,y,2) 故有 x-Xx0_y-Yo 2-20 m n p M(x0,y0,20) 此式称为直线的对称式方程(也称为点向式方程) 说明:某些分母为零时,其分子也理解为零 例如,当m=n=0,p≠0时,直线方程为 x=X0 (y=Yo HIGH EDUCATION PRESS 机动目录上页下页返回结束
( , , ) 0 0 0 0 M x y z 二、空间直线对称式方程与参数式方程 故有 说明: 某些分母为零时, 其分子也理解为零. m x x − 0 = = 0 0 y y x x 设直线上的动点为 则 M (x, y,z) n y y − 0 = p z z − 0 = 此式称为直线的对称式方程(也称为点向式方程) 直线方程为 s 已知直线上一点 ( , , ) 0 0 0 0 M x y z M (x, y,z) 例如, 当 m = n = 0, p 0 时, 和它的方向向量 机动 目录 上页 下页 返回 结束

设 x-x0=y-0=2-0=i m n p 得参数式方程 x=xo+mt y=yo+nt 2=20+pt HIGH EDUCATION PRESS 机动目录上页下页返回结束
设 得参数式方程 : t p z z n y y m x x = − = − = − 0 0 0 x = x + mt 0 y = y + nt 0 z = z + pt 0 机动 目录 上页 下页 返回 结束

例1.用对称式及参数式表示直线 x+y+z+1=0 2x-y+3z+4=0 解先在直线上找一点 令x=1,解方程组 ∫y+2=-2,得y=0,=-2 1y-3z=6 故(1,0,-2)是直线上一点 再求直线的方向向量3 交已知直线的两平面的法向量为 n1=(1,1,1),2=(2,-1,3) sLn1,3Ln2s=i×2 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例1.用对称式及参数式表示直线 解:先在直线上找一点. 3 6 2 − = + = − y z y z 再求直线的方向向量 令 x = 1, 解方程组 ,得 y = 0, z = −2 交已知直线的两平面的法向量为 是直线上一点 . s . 1 n2 s ⊥ n ,s ⊥ n1 n2 s = 机动 目录 上页 下页 返回 结束

s=n×n2= 111 =(4,-1,-3) 2-13 故所给直线的对称式方程为 x-1=y z+2 4 1 -3 x=1+4i 参数式方程为 y=-t z=-2-31 解题思路:先找直线上一点 再找直线的方向向量, HIGH EDUCATION PRESS 机动目 是上页下页返回结束
故所给直线的对称式方程为 参数式方程为 = t 4 x −1 −1 = y 解题思路: 先找直线上一点; 再找直线的方向向量. = (4,−1,−3) n1 n2 s = 2 1 3 1 1 1 − = i j k 机动 目录 上页 下页 返回 结束

三、两直线的夹角 两直线的夹角指其方向向量间的夹角(通常取锐角) 设直线L,L,的方向向量分别为 =(m1,h1,1),S2=(m2,n2,p2) 则两直线夹角φ满足 乐 cos O 子 mm2 +nn2 pip2 Vm+n1+p√m2+n2+P2 HIGH EDUCATION PRESS 机动目录上页下页返回结束
L2 L1 三、两直线的夹角 则两直线夹角 满足 1 2 设直线 L , L = 两直线的夹角指其方向向量间的夹角(通常取锐角) 的方向向量分别为 1 2 1 2 1 2 m m + n n + p p 2 1 2 1 2 m1 + n + p 2 2 2 2 2 m2 + n + p 1 2 1 2 cos s s s s = 1 s 2 s 机动 目录 上页 下页 返回 结束

特别有: (①)L11L2→152 mm2+n1n2+p1p2=0 2)L11L2一S/ 1=乃=P1 m2 n2 P2 (重合) HIGH EDUCATION PRESS 机动目录上页下页返回结束
特别有: 1 2 (1) L ⊥ L 1 2 (2) L // L m1m2 + n1n2 + p1 p2 = 0 2 1 2 1 2 1 p p n n m m = = 1 2 s ⊥ s 1 2 s //s 机动 目录 上页 下页 返回 结束 (重合)

例2.求以下两直线的夹角 x-1 y z+3 x+y+2=0 1-4 x+2z=0 解:直线L的方向向量为S=(Q,-4,1) 直线L,的方向向量为32=110 =(2,-2,-1) 102 二 直线夹角0的余弦为 1×2+(-4)×(-2)+1×(-1) cos= V12+(-4)2+12V22+(-2)2+(1)2 2 π 从而 0= 4 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例2. 求以下两直线的夹角 解: 直线 直线 二直线夹角 的余弦为 + = + + = 2 0 2 0 : 2 x z x y L cos = 从而 4 = 的方向向量为 的方向向量为 = (2, − 2, −1) 1 2 + (−4)(−2) +1(−1) 2 2 2 1 + (−4) +1 2 2 2 2 + (−2) + (−1) 1 0 2 2 1 1 0 i j k s = 机动 目录 上页 下页 返回 结束

四、直线与平面的夹角 当直线与平面不垂直时,直线和它在平面上的投影直 线所夹锐角0称为直线与平面间的夹角; 当直线与平面垂直时规定其夹角2 设直线L的方向向量为s=(m,n,p) 平面立的法向量为n=(A,B,C) 则直线与平面夹角φ满足 sin cos(s,n s.n Am+Bn+Cp sn Vm2+n2+p242+B2+C2 HIGH EDUCATION PRESS 机动目 上页下页返回结束
当直线与平面垂直时,规定其夹角 线所夹锐角 称为直线与平面间的夹角; L 四、直线与平面的夹角 当直线与平面不垂直时, 设直线 L 的方向向量为 平面 的法向量为 则直线与平面夹角 满足 2 2 2 2 2 2 m n p A B C Am Bn C p + + + + + + = 直线和它在平面上的投影直 s = (m,n, p) n = (A,B,C) ︿ sin = cos( s , n) s n s n = s n 机动 目录 上页 下页 返回 结束
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(PPT课件)8.5曲面及其方程.ppt
- 《高等数学》课程教学资源(PPT课件)8.6空间曲线及其方程.ppt
- 《高等数学》课程教学资源(PPT课件)9.1多元函数的基本概念.ppt
- 《高等数学》课程教学资源(PPT课件)9.2偏导数.ppt
- 《高等数学》课程教学资源(PPT课件)9.3全微分.ppt
- 《高等数学》课程教学资源(PPT课件)9.4多元复合函数的求导法则.ppt
- 《高等数学》课程教学资源(PPT课件)9.5隐函数的求导公式.ppt
- 《高等数学》课程教学资源(PPT课件)9.6多元函数微分学的几何应用.ppt
- 《高等数学》课程教学资源(PPT课件)9.7方向导数与梯度.ppt
- 《高等数学》课程教学资源(PPT课件)9.8多元函数的极值及其求法.ppt
- 《高等数学》课程教学资源(PPT课件)10.1二重积分的概念与性质.ppt
- 《高等数学》课程教学资源(PPT课件)10.2二重积分的计算法.ppt
- 《高等数学》课程教学资源(PPT课件)10.3三重积分.ppt
- 《高等数学》课程教学资源(PPT课件)10.4重积分的应用.ppt
- 《高等数学》课程教学资源(PPT课件)11.1对弧长的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)11.2对坐标的曲线积分.ppt
- 《高等数学》课程教学资源(PPT课件)11.3格林公式及其应用.ppt
- 《高等数学》课程教学资源(PPT课件)11.4对面积的曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)11.5对坐标的曲面积分.ppt
- 《高等数学》课程教学资源(PPT课件)11.6高斯公式.ppt
- 《高等数学》课程教学资源(PPT课件)8.3平面及其方程.ppt
- 《高等数学》课程教学资源(PPT课件)8.2数量积 向量积.ppt
- 《高等数学》课程教学资源(PPT课件)8.1向量及其线形运算.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第一章 行列式 §1.4 克拉默法则.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第一章 行列式 §1.3 n阶行列式的计算.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第一章 行列式 §1.2 行列式的性质.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第一章 行列式 §1.1 n阶行列式的概念.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第二章 矩阵与向量 §2.4 矩阵的秩.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第二章 矩阵与向量 §2.3 向量组的线性相关性.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第二章 矩阵与向量 §2.2 向量及其线性运算.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第二章 矩阵与向量 §2.1 消元法与矩阵的初等变换.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第三章 矩阵的运算 三、分块对角矩阵 §3.4 分块矩阵.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第三章 矩阵的运算 §3.3 初等矩阵.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第三章 矩阵的运算 §3.2 逆矩阵.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第三章 矩阵的运算 §3.1 矩阵的运算.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第四章 线性方程组 §4.3 非齐次线性方程组.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第四章 线性方程组 §4.2 齐次线性方程组.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第四章 线性方程组 §4.1 线性方程组的解的判别.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第五章 相似矩阵与二次型 §5.6 正定二次型.ppt
- 《线性代数》课程教学课件(PPT讲稿,B)第五章 相似矩阵与二次型 §5.5 二次型及其标准形.ppt