《高等数学》课程教学资源(PPT课件)高等数学7.1 微分方程

第七章 微分方程 已知y=f(x),求y一积分问题 推广 已知含y及其若干阶导数的方程,求y 微分方程问题
微分方程 第七章 已知 y = f (x),求 y — 积分问题 已知含 y及其若干阶导数的方程 ,求 y — 微分方程问题 推广

第一为 第十二章 微分方程的基本桡念 几何问题 引例 物理问题 微分方程的基本概念 HIGH EDUCATION PRESS 机动目录上页下页返回结束
微分方程的基本概念 机动 目录 上页 下页 返回 结束 第一节 微分方程的基本概念 引例 几何问题 物理问题 第十二章

例1. 一曲线通过点(1,2),在该曲线上任意点处的 切线斜率为2x,求该曲线的方程 解:设所求曲线方程为y=x),则有如下关系式 2x x=1=2 由①得y=「2xdx=x2+C(C为任意常数 由②得C=1,因此所求曲线方程为y=x2+1 HIGH EDUCATION PRESS 机动目 下页返回结束
例1. 一曲线通过点(1,2) ,在该曲线上任意点处的 解: 设所求曲线方程为 y = y(x) , 则有如下关系式: x x y 2 d d = ① (C为任意常数) 由 ② 得 C = 1, 1. 2 因此所求曲线方程为 y = x + 2 y x=1= ② 由 ① 得 切线斜率为 2x , 求该曲线的方程 . 机动 目录 上页 下页 返回 结束

例2.列车在平直路上以20m/s的速度行驶,制动时 获得加速度a=-0.4m/s2,求制动后列车的运动规律 解:设列车在制动后t秒行驶了s米,即求、=s(0 =-0.4 已知 ds s1=0=0, dz1=0=20 由前一式两次积分,可得 s=-0.22+C1t+C2 利用后两式可得 C1=20,C2=0 因此所求运动规律为 s=-0.2t2+201 说明:利用这一规律可求出制动后多少时间列车才 能停住,以及制动后行驶了多少路程 HIGH EDUCATION PRESS 机动目录上页下页返回结束
例2. 列车在平直路上以 的速度行驶, 制动时 获得加速度 求制动后列车的运动规律. 解: 设列车在制动后 t 秒行驶了s 米 , 已知 0 , s t=0 = 由前一式两次积分, 可得 1 2 2 s = − 0.2t +C t +C 利用后两式可得 因此所求运动规律为 s 0.2 t 20 t 2 = − + 说明: 利用这一规律可求出制动后多少时间列车才 能停住 , 以及制动后行驶了多少路程 . 即求 s = s (t) . 机动 目录 上页 下页 返回 结束

微分方程的基本概念 含未知函数及其导数的方程叫做微分方程 常微分方程(本章内容) 分类 偏微分方程 方程中所含未知函数导数的最高阶数叫做微分方程 的阶. 一般地,n阶常微分方程的形式是 F(x,y,y,.,ym)=0 或ym=f(x,y,y,ym-)(n阶显式微分方程〉 HIGH EDUCATION PRESS 页返回结束
常微分方程 偏微分方程 含未知函数及其导数的方程叫做微分方程 . 方程中所含未知函数导数的最高阶数叫做微分方程 (本章内容) ( , , , , ) 0 ( ) = n F x y y y ( , , , , ) ( ) ( −1) = n n y f x y y y ( n 阶显式微分方程) 微分方程的基本概念 一般地 , n 阶常微分方程的形式是 的阶. 分类 或 机动 目录 上页 下页 返回 结束

微分方程的解一 使方程成为恒等式的函数, 通解一 解中所含独立的任意常数的个数与方程 的阶数相同 特解一 不含任意常数的解,其图形称为积分曲线 定解条件 一确定通解中任意常数的条件: n阶方程的初始条件(或初值条件) y(x)=0,y'(x)=%,y-》(x)= (n-1) 引例1 =2x d-v =-0.4 引例2 dx yx=1=2 S1=0=0, n=20 通解 y=x-+C s=-0.21+Ct+C2 特解 y=x2+1 s=-0.212+201 HIGH EDUCATION PRESS O◆0C0-8 机动目录上页下页返回结束
0 , s t=0 = 20 d 0 d = t t= 引例 s 2 0.4 2 2 d d = − x y — 使方程成为恒等式的函数. 通解 — 解中所含独立的任意常数的个数与方程 ( 1) 0 0 ( 1) 0 0 0 0 ( ) , ( ) , , ( ) − − = = = n n y x y y x y y x y — 确定通解中任意常数的条件. n 阶方程的初始条件(或初值条件): 的阶数相同. 特解 x x y 2 d d = 2 y x=1= 引例1 y = x +C 2 1 2 2 通解: s = −0.2t +C t +C s 0.2t 20t 2 1 = − + 2 特解: y = x + 微分方程的解 — 不含任意常数的解, 定解条件 其图形称为积分曲线. 机动 目录 上页 下页 返回 结束

例3.验证函数x=C]coskt+C2 sinkt(C,C2为常数) 是微分方程 dr+r=0的解并求满足初始条件 d x dx 1=0=A, =0的特解 dt t=07 解 d2x dt2 =-Cik2 coskt -C2k2 sin kt =-k2(C sinkt+C2 coskt)=-k2x 这说明x=C,coskt+C2 sinkt是方程的解 C,C,是两个独立的任意常数,故它是方程的通解? 利用初始条件易得:C1=A,C2=0,故所求特解为 x=Acoskt HIGH EDUCATION PRESS 页返回结束
例3. 验证函数 是微分方程 的解, , x t=0 = A 0 d 0 d = t t = x 的特解 . 解: ( sin cos ) 1 2 2 = −k C kt +C kt 这说明 x C cos kt C sin kt = 1 + 2 是方程的解 . 是两个独立的任意常数, ( , ) C1 C2为常数 利用初始条件易得: 故所求特解为 x = Acos k t 故它是方程的通解? 并求满足初始条件 机动 目录 上页 下页 返回 结束
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(PPT课件)高等数学7.2 可分离变量微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.3 齐次方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.4 一阶线性微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.5 可降阶高阶微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.6 高阶线性微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.7 常系数齐次线性微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学7.8 常系数非齐次线性微分方程.ppt
- 《高等数学》课程教学资源(导学单)1、函数与极限.doc
- 《高等数学》课程教学资源(导学单)2连续.doc
- 《高等数学》课程教学资源(导学单)3、导数与微分.doc
- 《高等数学》课程教学资源(导学单)4、中值定理.doc
- 《高等数学》课程教学资源(导学单)6、不定积分.doc
- 《高等数学》课程教学资源(导学单)11、二阶线性微分方程.doc
- 《高等数学》课程教学资源(书籍教材)高等数学 第7版 上册 同济大学.pdf
- 《高等数学》课程教学资源(书籍教材)同济大学高等数学习题全解指南第七版上.pdf
- 《高等数学》课程教学资源(作业习题)高等数学AI模拟题一.doc
- 《高等数学》课程教学资源(章节练习)第一章练习题.doc
- 《高等数学》课程教学资源(章节练习)第二章练习题.doc
- 《高等数学》课程教学资源(章节练习)第三章练习题.doc
- 《高等数学》课程教学资源(章节练习)第五章练习题.doc
- 《高等数学》课程教学资源(PPT课件)高等数学6.2 定积分在几何学上的应用.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学5.4 反常积分.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学5.3 定积分的换元法和分部积分法.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学5.2 微积分的基本公式.ppt
- 《高等数学》课程教学资源(课件讲稿)高等数学5.1.pdf
- 《高等数学》课程教学资源(PPT课件)高等数学4.4 有理函数的积分.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学4.3 分部积分法.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学4.2 换元积分法.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学4.1 不定积分.ppt
- 《高等数学》课程教学资源(课件讲稿)高等数学3.6.pdf
- 《高等数学》课程教学资源(PPT课件)高等数学3.5 函数的极值与最大值最小值.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学3.4 函数的单调性与曲线的凹凸性.ppt
- 《高等数学》课程教学资源(课件讲稿)高等数学3.3.pdf
- 《高等数学》课程教学资源(课件讲稿)高等数学3.2.pdf
- 《高等数学》课程教学资源(PPT课件)高等数学3.1 微分中值定理与导数的应用.ppt
- 《高等数学》课程教学资源(课件讲稿)高等数学2.5.pdf
- 《高等数学》课程教学资源(课件讲稿)高等数学2.4.pdf
- 《高等数学》课程教学资源(PPT课件)高等数学2.3 高阶导数.ppt
- 《高等数学》课程教学资源(PPT课件)高等数学2.2 函数的求导法则.ppt
- 《高等数学》课程教学资源(课件讲稿)高等数学2.1.pdf