复旦大学:《数学分析》精品课程教学课件(讲稿)多元连续函数

S2多元连续函数多元函数定义11.2.1设D是R"上的点集,D到R的映射f:D→R,XHz称为n元函数,记为z=f(x)。这时,D称为f的定义域,f(D)=(zeR[z=f(x),xeD)称为 的值域,I=((x,z)eR+I [z=f(x),xeD)称为f的图象
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D →R, x 6 z 称为 n 元函数,记为 = fz x)( 。这时,D 称为 f 的定义域, f D)( = ∈ R = fzz xx ∈ D}),(|{ 称为 f 的值域,Γ= }),(|),{( 1 R ∈=∈ D + x fzz xx n 称 为 f 的图象。 §2 多元连续函数

是二元函数,其定义域为例11.2.12=hxD= (x,y)e R?-<622a函数的图象是一个上半椭球面i(见图11.2.1)。Z4xb2aC1x图 11.2.1
例 11.2.1 2 2 2 2 1 b y a x z −−= 是二元函数,其定义域为 D= ⎭⎬⎫ ⎩⎨⎧ ),( ≤+∈ 1 22 22 2 by ax yx R , 函数的图象是一个上半椭球面(见图 11.2.1)。 z 2 2 2 2 1 b y a x z −−= O y x 图 11.2.1

多元函数的极限定义11.2.2设D是R"上的开集,x。=(°,x,…,x)eD为一定点,z=f(x)是定义在D(x上的n元函数,A是一个实数。如果对于任意给定的>0,存在S>0,使得当xeO(xo,)1(x}时,成立[f(x)- Al<6,则称x趋于x时f收敛,并称A为f当x趋于x时的(n重)极限,记为lim f(x) = A,或 f(x)→A (x→x),或-→Xolim f(xi,X2,"",xn)=A。X→XX2x2X-→x
多元函数的极限 定义 11.2.2 设 D 是 n R 上的开集, = ( )∈ 0 0 2 010 , n x " xxx D 为一定 点, = fz x)( 是定义在 D \ { 0 x }上的 n 元函数, A是一个实数。如果 对于任意给定的ε > 0,存在δ > 0,使得当 ),( ∈O xx 0 δ \ { 0 x }时,成立 x)( Af <− ε , 则称 x 趋于 0 x 时 f 收敛,并称 A为 f 当 x 趋于 0 x 时的(n 重)极限, 记为 0 lim →xx f x)( = A , 或 f x)( → A ( 0 → xx ),或 Axxxf n xx xx xx nn = → → → 21 ),(lim 0 0 22 0 11 " "

多元函数的极限定义11.2.2设D是R"上的开集,x。=(x°,x,.…,x)eD为一定点,z=f()是定义在D/x上的n元函数,A是一个实数。如果对于任意给定的>0,存在>0,使得当xO(xo,)1(x}时,成立If(x)- Al<6,则称x趋于x时f收敛,并称A为f当x趋于x时的(n重)极限,记为lim f(x) = A,或 f(x)→A (x→x),或-→Xolim f(xi,X2,"",xn)=A。X→X2-x9Xa→x注在上面的定义中,“xeO(xo,)I(x!”也可以用下面的条件Ix-xks, Ix-xks, ., Ix-xko,x±xo替代
注 在上面的定义中,“ ),( 0 ∈O xx δ \ { 0 x }”也可以用下面的条件 ,||,|| 022 011 δ xxxx 0,存在δ > 0,使得当 ),( ∈O xx 0 δ \ { 0 x }时,成立 x)( Af <− ε , 则称 x 趋于 0 x 时 f 收敛,并称 A为 f 当 x 趋于 0 x 时的(n 重)极限, 记为 0 lim →xx f x)( = A , 或 f x)( → A ( 0 → xx ),或 Axxxf n xx xx xx nn = → → → 21 ),(lim 0 0 22 0 11 " "

2证明例11.2.2设f(x,y)=(x+y)sin++limo f(x,y) =0。(x,)-→(0.0)证由于I f(x,y)-0(x+y)sin0,只要取8=那么当x-oks1y-ok,2且(x,y)±(0,0)时,88[f(x,y)-0/≤1x[+/y/<8+8=+601212这说明了,lim。f(x,y)=0。(x,y)→(0.0
例 11.2.2 设 22 sin)(),( yx y yxyxf + += ,证明 0),(lim )0,0(),( = → yxf yx 。 证 由于 22 sin)(|0),(| yx y yxyxf + +=− ≤ + yx || ≤ + yx |||| , 所以,对于任意给定的ε > 0,只要取 2ε δ = ,那么当 − < δ yx − |0|,|0| < δ , 且 yx ≠ )0,0(),( 时, yxf − |0),(| ≤ ε ε ε δδ =+=+<+ 22 yx |||| 。 这说明了 0),(lim )0,0(),( = → yxf yx

对一元函数而言,只要在x。的左、右极限存在且相等,函数在x处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求当x以任何方式趋于x时,函数值都趋于同一个极限。若自变量沿不同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个函数在该点的极限一定不存在
对一元函数而言,只要在 0 x 的左、右极限存在且相等,函数在 0 x 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 当 x以任何方式趋于 0 x 时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在

对一元函数而言,只要在x的左、右极限存在且相等,函数在x处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求当x以任何方式趋于x时,函数值都趋于同一个极限。若自变量沿不同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个函数在该点的极限一定不存在。xy例 11. . 3 (, ) =-,) (. ) (0)。当点x=(x,y)沿x轴和y轴趋于(0,0)时,f(x,y)的极限都是0。但当点x=(x,y)沿直线y=mx趋于(0,0)时,mx?mlim f(x,y)= lim1 +m?x-→0x?+m2x?x-→0y=mx对于不同的m有不同的极限值。这说明f(x,y)在点(0.0)的极限不存在
例 11.2.3 设 )0,0(),(,),( 22 ≠ + = yx yx xy yxf 。 当点 x = yx ),( 沿 x 轴和 y 轴趋于 )0,0( 时, yxf ),( 的极限都是 0。但 当点 x = yx ),( 沿直线 y = mx 趋于 )0,0( 时, 222 2 2 0 0 1 lim),(lim mm xmx mx yxf x mxy x + = + = → = → , 对于不同的m有不同的极限值。这说明 yxf ),( 在点 )0,0( 的极限不存在。 对一元函数而言,只要在 0 x 的左、右极限存在且相等,函数在 0 x 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 当 x以任何方式趋于 0 x 时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在

下例说明即使点x沿任意直线趋于x时,f(x,)的极限都存在且相等,仍无法保证函数f在x.处有极限。例 11. 2. 4 设 f(x,y)= (-x)y*+x, (x,J)*(0,0)。当点x=(xy)沿直线y=mx趋于(0,0)时,成立(m2x2-x)2lim f(x,y)= lim=1;m*x4+x?x-0x0y=mx当点x=(x,y)沿y轴趋于(0,0)时,也成立limf(xy)=1,因此当点x=(x,y)-x=0沿任何直线趋于(0,0)时,f(x,y)极限存在且相等。但f(x,y)在点(0,0)的极限不存在。事实上,f在抛物线2=x上的值为0,因此当点x=(x,y)沿这条抛物线趋于(0.0)时,它的极限为0
下例说明即使点 x 沿任意直线趋于 x0 时, yxf ),( 的极限都存在且 相等,仍无法保证函数 f 在 x0处有极限。 例 11.2.4 设 )0,0(),(, )( ),( 24 22 ≠ +− = yx xy xy yxf 。 当点 x = yx ),( 沿直线 y = mx 趋于 )0,0( 时, 成立 1 )( lim),(lim 244 222 0 0 = +− = → = → xxm xxm yxf x mxy x ; 当点 x = yx ),( 沿 y 轴趋于 )0,0( 时,也成立 1),(lim 0 0 = = → yxf x y ,因此当点 x = yx ),( 沿任何直线趋于 )0,0( 时, yxf ),( 极限存在且相等。 但 yxf ),( 在点 )0,0( 的极限不存在。事实上, f 在抛物线 = xy 2 上的 值为 0,因此当点 x = yx ),( 沿这条抛物线趋于 )0,0( 时,它的极限为 0

元函数的极限性质,如唯一性、局部有界性、局部保序性、局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不再细述,请读者自行加以证明
一元函数的极限性质,如唯一性、局部有界性、局部保序性、 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明

一元函数的极限性质,如唯一性、局部有界性、局部保序性、局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不再细述,请读者自行加以证明。累次极限对重极限limf(x,J)(即limf(x,y)),人们很自然会想到的是,(x.V)>(xoXxoy-yo能否在一定条件下将重极限(x,J)→(xo,y)分解成为两个独立的极限x→x和y→yo,再利用一元函数的极限理论和方法逐个处理之?这后一种极限称为累次极限
累次极限 对重极限 ),(lim ),(),( 00 yxf → yxyx (即 ),(lim 0 0 yxf yy xx → → ),人们很自然会想到的是, 能否在一定条件下将重极限 yx ),( ),( 00 → yx 分解成为两个独立的极限 0 → xx 和 0 → yy ,再利用一元函数的极限理论和方法逐个处理之? 这后一种极限称为累次极限。 一元函数的极限性质,如唯一性、局部有界性、局部保序性、 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《数学分析》精品课程教学课件(讲稿)第十章 函数项级数 §1 函数项级数的一致收敛性.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)微积分实际应用举例.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)函数微分应用举例.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)闭区间上的连续函数.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)第二章 数列极限 §1 实数系的连续性.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十六章 Fourier级数 16.4 Fourier 变换和Fourier积分 16.5 快速 Fourier 变换.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十六章 Fourier级数 16.3 Fourier级数的性质.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十六章 Fourier级数 02 16.2 Fourier级数的收敛判别法.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十六章 Fourier级数 16.1 函数的Fourier级数展开.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十五章 含参变量积分 15.3 Euler积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十五章 含参变量积分 15.2 含参变量的反常积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十五章 含参变量积分 15.1 含参变量的常义积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十四章 曲线积分与曲面积分 14.5 场论初步.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十四章 曲线积分与曲面积分 14.4 微分形式的外微分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十四章 曲线积分与曲面积分 14.3 Green公式、Gauss公式和Stokes公式.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十四章 曲线积分与曲面积分 14.2 第二类曲线积分与第二类曲面积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十四章 曲线积分与曲面积分 14.1 第一类曲线积分与第一类曲面积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十三章 重积分 13.5 微分形式.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十三章 重积分 13.4 反常重积分.pdf
- 复旦大学:《数学分析》精品课程教学资源(习题全解)第十三章 重积分 13.3 重积分的变量代换.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)条件极值问题与Lagrange乘数法.pdf
- 复旦大学:《数学分析》精品课程教学课件(讲稿)Green公式、Gauss公式和Stokes公式.pdf
- 华中科技大学:《概率论与数理统计》课程教学大纲.pdf
- 华中科技大学:《概率论与数理统计》课程教学资源(试卷习题)结业试卷四套(含答案).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第一章 随机事件与概率 §1.1 随机事件和样本空间 §1.2 事件的关系和运算.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第一章 随机事件与概率 §1.3 事件的概率及计算.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第一章 随机事件与概率 §1.4 概率的公理化定义(1/2).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第一章 随机事件与概率 §1.4 概率的公理化定义(2/2).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第二章 随机变量及其分布 §2.1 随机变量及其分布函数 §2.2 离散型随机变量.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第二章 随机变量及其分布 §2.3 连续型随机变量(1/2).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第二章 随机变量及其分布 §2.3 连续型随机变量(2/2).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第二章 随机变量及其分布 §2.4 随机变量函数的分布.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第三章 多维随机变量及其分布 §2.1 二维随机变量.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第三章 多维随机变量及其分布 §3.2 边缘分布 §3.3 条件分布.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第三章 多维随机变量及其分布 §3.4 随机变量的独立性 §3.5 多个随机变量函数的分布.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第四章 数字特征 4.0.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第四章 数字特征 §4.1 方差 §4.4 协方差和相关系数.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第四章 数字特征 §4.5 随机变量的极限.pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第六章 数理统计的基本概念 §6.1 总体与样本 §6.2 抽样分布(1/2).pdf
- 华中科技大学:《概率论与数理统计》课程电子教案(讲义)第六章 数理统计的基本概念 §6.2 抽样分布(2/2)、第七章 参数估计 §7.1 参数估计的概念 §7.2 点估计.pdf
