华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter Two Mineral Nutrition of Plant

Chapter TwoMineralNutritionofPlantIAbsorptionof mineral elements byplant cells1Biological membrane(1)Nature: selectivity permeability(2) Composition:①protein30~40%②phospholipid40~50%carbohydrate,10%~20%sterol? Protein include extrinsic (peripheral protein )intrinsic protein (integral protein )and a anchoredprotein. Their roles are tansport, structure.and transfer message etc.·Phospholipid includepolar head group composition:cholin,phosphateand glycerd.(naturewater-loving or called hydrophilic) and nonpoplar tail group (14~24 carbon atoms long-chainfattyacids.Nature:water-fearingorcalledhydrophobic)(3) Structure·Phospholipids consist of a double layer (bilayer)· Proteins associated with lipid bilayer are of three types: intrinsic (integral),extrinsic( peripheral),and anchored. Integral proteins are embeded in the lipid bilayer, most integral proteins span theentire width of the phospholipid bilayer.They serve as ion channels and certain receptors etcperipheral protein are bound to membrane surface by noncovalent bonds, such as ionic bonds orhydrogen bonds.Peripheral proteins serve a variety of functions in the cell. Anchored protein arebound to the menbrane surface via lipid molecules (fatty acid-anchored protein and glycosyIphosphatidylinositol anchored protein and prenyl lipid-anchord protiens)Fluid-mosaic model:
Chapter Two Mineral Nutrition of Plant I Absorption of mineral elements by plant cells 1 Biological membrane (1) Nature : selectivity permeability (2) Composition: ①protein 30~40% ②phospholipid 40~50% ③carbohydrate , 10%~20% ④sterol ·Protein include extrinsic (peripheral protein ) intrinsic protein. (integral protein )and a anchored protein. Their roles are tansport , structure.and transfer message etc. ·Phospholipid include polar head group composition: cholin, phosphate and glycerd. (nature: water-loving or called hydrophilic ) and nonpoplar tail group (14~24 carbon atoms long-chain fatty acids. Nature: water-fearing or called hydrophobic ) (3) Structure ·Phospholipids consist of a double layer (bilayer) ·Proteins associated with lipid bilayer are of three types: intrinsic (integral),extrinsic( peripheral), and anchored. Integral proteins are embeded in the lipid bilayer, most integral proteins span the entire width of the phospholipid bilayer. They serve as ion channels and certain receptors etc. peripheral protein are bound to membrane surface by noncovalent bonds, such as ionic bonds or hydrogen bonds. Peripheral proteins serve a variety of functions in the cell. Anchored protein are bound to the menbrane surface via lipid molecules (fatty acid-anchored protein and glycosy lphosphatidylinositol anchored protein and prenyl lipid-anchord protiens) Fluid-mosaic model:

hosphateHydrophilireg/oCellvslyceroPlasmcarbohwOutsideof celleqionohpioiamHydrophobiregiorHydrophillPhosphatidylcholineCytoplasmIntegralPeripheralCholineproteirorotei(8)GalactoseAdiDrimarwallsFiGURE2.1(A)Theplasmamembrane,endoplasmicreticerendomembranesofplant cells consist ofPhosphatidyicholineGalactosylglycerideibedded in a phospholipidbilayer. (B)This transctron.micrographshowsplasmamembranesinllaotmOspace,ivnaoenhevoengandSteer1992.Thetypes andmechanisms of soluteabsorptionbyplantcells.(1) Types:①lon channel transport②lon pump transportCarrier transportPinocytosis(2)Mechanisms@Ion channel transport major theory:There are ion channels (integral protein )inplasmamembrane.② Ion channel is activated by ion concentration gradient and membrane potential gradient(Calledelectrochemicalpotentialgradient)③Ion channel isopened@ ons intothecellfollowing electrochemical potential gradient
2. The types and mechanisms of solute absorption by plant cells. (1) Types: ①Ion channel transport ②Ion pump transport ③Carrier transport ④Pinocytosis (2)Mechanisms ① Ion channel transport major theory: There are ion channels (integral protein )in plasmamembrane. ② Ion channel is activated by ion concentration gradient and membrane potential gradient (Called electrochemical potential gradient ) ③ Ion channel is opened ④ Ions into the cell following electrochemical potential gradient

Transported moleculeOOChannelCarrierPumpproteinproteinPlasmaHighmembraneEnergyLowElectrochemicalSimplediffusionpotentialgradientPassive transportPrimaryactivetransport(in the direction of(against the directionelectrochemicalgradient)ofelectrochemical gradient)FIGURE2.2Three classes ofmembrane transport proteins:channels,carriers,andpumps.Channels and carriers canmediatethepassivetransportof solutes acrossmembranes (by simplediffusion orfacilitateddiffusion),downthesolute's gradientofelectrochemical potential.Channelproteinsactasmembranepores,andtheirspecificity is determined primarilyby the biophysical properties of the channel.Carrierproteinsbind thetransportedmoleculeononesideof themembraneandrelease it on the other side.Primary active transport is carried out bypumps anduses energy directly,usuallyfrom ATPhydrolysis,to pump solutes against theirgradientofelectrochemicalpotential.Kinds of ion channelThereareK+ClCa2+,NO,channelsK+channel:ForexampleCompositionTwo a-subunitsVoltage gateMajor partSelectivityfilterTwo β -subunits, Regulatoryα -subunitTransport speed: 107-108 ions ·s-Distribution:1K+channel.15Hm-2inplasmamembrane250k+channel·4000μm-2Guard cell plasmamembrane
Kinds of ion channel There are K+,Cl-,Ca2+ , NO3 − channels For example K+ channel: Composition Two α-subunits Transport speed: 107 -108 ions·s -1 Distribution: 1 K+ channel·15 µm-2 in plasmamembrane. 250 k+ channel·4000 µm-2 Guard cell plasmamembrane Voltage gate Selectivity filter Major part Two β-subunits, Regulatory α-subunit

②CarriertransportS+C-+S·C-Sinto the cellUniportcarrierFollowingelectrochemicalPotential gradient transport.H+Kind of carrier+C-H+: A· C-H*·Ainto the cellSymporterAH*(outside)H+ into the cell+C-H·B·CAntiporterB(inside)B out of the cellSpeed: 104-105 ions : s!(A) Symport(B) AntiportOUTSIDEOFCELLAOBFIGURE2.3TwoexamplesofsecondaryactivetransportcoupledtoaprimaryproHighLowton gradient. (A) In a symport,the energydissipatedbya proton movingback intothe cell is coupled to the uptake of onemolecule ofa substrate (e.g.,a sugar)intothe cell. (B) In an antiport, the energy dis-sipatedbyaprotonmovingbackintothecell is coupled tothe activetransport of asubstrate (forexample,a sodium ion)outof the cell, In both cases, the substrateHighunderconsideration ismovingagainstitsLowgradientof electrochemical potential,BothBAOBneutral and charged substrates can beElectrochemicalElectrochemicaltransported by such secondary activepotential gradientpotential gradientCYTOPLASMofsubstrateAofsubstrateBtransportprocesses③lonpumptransportproton pump (H*-pump)KindCalciumpump(Ca2*-pump)ProtonpumptransportMajor theoryA plasmamembrane H-pumpATPase is effected by H+ cytosol..ATP hydrolysis.. Uses the energy released to transport H+ (hydrogen ions) out of the cell·Establishesanelectrochemical potential gradient.Allows (Causes)K+ and other positively charged ions to cross the membrane via a channelprotein.· Negatively charged (I)ions are transported along with H+ into the cell
② Carrier transport Kind of carrier Uniport carrier S+C→S·C→S into the cell Following electrochemical Potential gradient transport. Symporter H+ A +C→H+·A·C→H+·A into the cell Antiporter H+ (outside) B(inside) +C→H+·B·C H+ into the cell B out of the cell Speed: 104 -105 ions·s -1 ③Ion pump transport proton pump (H+ -pump) Calcium pump(Ca2+ -pump) Proton pump transport Major theory · A plasmamembrane H+ -pump ATPase is effected by H+ cytosol. · ATP hydrolysis. ·Uses the energy released to transport H+ (hydrogen ions) out of the cell. ·Establishes an electrochemical potential gradient · Allows (Causes ) K+ and other positively charged ions to cross the membrane via a channel protein. ·Negatively charged (I- )ions are transported along with H+ into the cell. Kind s 3

outside of cell2.Theelectrochemicalgradient causes Kto enterbywayofachannel protein.1.AnATP-drivenpumptransportsHHO0H*outofthe cell.HHGHHHH+H+IH上店THIMADP+ATFH3.Negatively chargedions()are trans-Hported along withH+intothe cellinsideofcellModel formineraltransport.Figure 2.4When minerals aretransported across theplasmamembrane,anATP-drivenpumpremoveshydrogenions fromthecell.Thisestablishes anelectrochemical gradientthatallowspotassium(K)andotherpositivelychargedionsto crossthemembraneviaachannel protein.Negatively charged mineral ions (I)can cross themembranebywayofacarrierwhentheyhitcharidewithhydrogenions (H"),whichare diffusingdown theirconcentration gradient.@PinocytosisSubstances (lon or mocecule adsorb in the plasmamembrane.)·Plasmamembranefold·Forma vescle·VescleintothecytosolorvacuoleFigure2.5PinocytosisSummary:
④Pinocytosis · Substances (Ion or mocecule adsorb in the plasmamembrane.) ·Plasma membrane fold. ·Forma vescle ·Vescle into the cytosol or vacuole. Figure 2.5 Pinocytosis Summary:

SymportersAminoSucroseHHt,Na*acidH+KAntiporterPO.HtCYTOSOLNatPH7,2NOjAE=-120mVPlasmaEffluxmembranecarrierAntiportersSucroseMg2+HexoseCd2+ADP+PSucroseCa2+fyeHATPH+K3 H*H+.PC-Cd2+中H+CATPPH 5.5pumpsH+NatADP+PZE=-90mVABCEADP+PATP>ABCAnthocyaninVACUOLEtransportersHsGSTpH 5.5pumps2H+-ATPABCETonoplastATPADP+PAnions,手ADP+PcationsPPATPCa2tADP+Ppumpca人2PADP+P*Ca2+FastvacuolarSlowvacuolar(FV) channel(SV)channelIP3Anions(malate2-CF,NO)ChannelsOUTSIDEOF.CELLinwardInwardrectifyingrectityingCa2+fOutwardOutwardrectifyingrectifyingChannelsFIGURE6.11Overview of the various transport processes on the plasmamembrane and tonoplast of plant cells.Figure2.6Varioussolutestransportprocesses
Figure 2.6 Various solutes transport processes
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter One Water Metabolism of Plant.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十三章 植物的抗性生理(hardiness physiology).doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十一章 植物的生殖生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十章 植物的生长生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第九章 光形态建成.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十二章 植物的成熟和衰老生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第六章 植物体内有机物的运输.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第八章 植物生长物质 第一节 生长素类 第二节 赤霉素类 第三节 细胞分裂素类.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第八章 植物生长物质 第四节 乙烯 第五节 脱落酸 第六节 其它天然的植物生长物质 第七节 植物生长抑制物质.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第七章 细胞信号转导.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第四章 植物的呼吸作用 第三节 电子传递与氧化磷酸化 第四节 呼吸过程中能量的贮存和利用 第五节 呼吸作用的调节及控制 第六节 影响呼吸作用的因素 第七节 呼吸作用和农业生产.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第三章 光合作用 第三节 光合作用的机理 第四节 光呼吸 第五节 影响光合作用的因素 第六节 植物对光能利用.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第四章 植物的呼吸作用 第一节 呼吸作用的概念和生理意义 第二节 植物的呼吸代谢途径.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第五章 植物体内有机物的代谢.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第三章 光合作用 第一节 光合作用的重要性 第二节 叶绿体及叶绿体色素.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第二章 植物的矿质营养 第三节 植物体对矿质元素的吸收 第四节 矿物质在植物体内的运输和分布 第五节 植物对氮、硫、磷的同化 第六节 合理施肥的生理基础.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第二章 植物的矿质营养 第一节 植物必需的矿质元素 第二节 植物细胞对矿质元素的吸收.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)绪论 第一章 植物的水分生理 第一节 植物对水分的需要 第二节 植物细胞对水分的吸收 第三节 植物根系对水分的吸收.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第一章 植物的水分生理 第四节 蒸腾作用 第五节 植物体内水分的运输 第六节 合理灌溉的生理基础.doc
- 华南师范大学:《植物生理学》课程教学资源(授课教案)生物科学研究 第五次课教案 如何报告科学研究成果.doc
- 华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter Three Photosynthesis.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验1 植物细胞质壁分离和复原现象的观察.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验2 渗透作用现象观察.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验3 植物细胞水势.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验4 植物组织水势的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验5 钾离子对气孔开度的影响.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验6 蒸腾速率的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验7 植物的溶液培养.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验8 植物硝态氮的比色测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验11 叶绿体.光和CO2是光合作用的必要条件.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验10 叶绿体色素的提取分离及其性质鉴定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验12 叶绿体的分离.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验9 硝酸还原酶活性的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验15 植物组织中可溶性糖含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验16 蛋白质含量测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验14 叶绿素a和b含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验13 离体叶绿体对染料的还原作用.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验18 水果和蔬菜中维生素C含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验17 粗脂肪的定量测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验19 植物呼吸速率的测定.doc