华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter One Water Metabolism of Plant

Chapter OneWaterMetabolismofPlant.Problem: what is the water metabolism?.Concept:@Howtothewatermoveintheroot?The contentof②Howtothewatertransportupward.plant watermetabolismHowtothe water transpiration in plant.IAbsorptionofwaterbyplantcells1.Water transport processes (pathway)in the membrane.WatercancrossplantcellmembranesBydiffusionof individual watermoleculesthroughthemembranebilayerTwopathways②By microscopic bulk flow of watermolecules through awater selective poreformedbyintegralmembranepotential suchasaquaporinsOUTSIDEOFCELLWatermolecules80Water-selectivepore(aquaporin)MembranebilayerCYTOPLASMFIGURE1.1Watercancrossplantmembranesbydiffusionof individual watermolecules through the membranebilayer,as shownontheleft,andbymicroscopicbulkflowofwatermoleculesthrougha water-selectiveporeformedbyintegralmembraneproteinssuchasaquaporins.2.ThedrivenforceofwatercrossmembrcmeOsmosis
Chapter One Water Metabolism of Plant ·Problem: what is the water metabolism? ·Concept: I Absorption of water by plant cells. 1.Water transport processes (pathway)in the membrane. ·Water can cross plant cell membranes. · 2.The driven force of water cross membrcme—Osmosis The content of plant water metabolism ①How to the water move in the root ? ②How to the water transport upward. ③How to the water transpiration in plant. Two pathways ①By diffusion of in dividual water molecules through the membrane bilayer ②By microscopic bulk flow of water molecules through a water selective pore formed by integral membrane potential such as aquaporins

@Osmossis concept:The movement of water across a selectivelypermeable membranetoward theregionofmore negative waterpotential,(lower concentration ofwater)②Waterpotential(y)· Chemial potential =free energy(KJ) · mol-' substance: The chemical potential ofwater represents the freeenergy status of water.V,=s_w_AmVwVwN·m-mol-!Chemical Potential of waterVw=Partialmolarvolumeof waterm'.mol-!= N.m-- PaUnit:1bar=0.987atm=10'Pa=0.1MPayeYw pure water =OMPaw other solutions<OMPaY w sea water--2.6MPaw 1mol.- sucrose solution=-2.5MPa?Waterpotentialofcells.Whatarethecomponentsofcellwaterpotential?: A typical cell, its water potential components: Three major factors contribute to cell waterpotential.W.=.(w,)+W,+Vg,(y,):The term y.(y,)called the solute potential or the osmotic potential, representsthe effect of dissolved solutes on water potential。 Solutes reduce the free energy of water bydiluting the water.V, =-CiRTC= concentration of the solution in moles per literR=the gas constant (0.00831kg · MPa mol-1 · K-')T=absolute temperature(K) =degrees C+273i-isotonic coefficientVp:Pressure potential The term Vp is the hydrostatic pressure of the solution Positive
①Osmossis concept : The movement of water across a selectively permeable membrane toward the region of more negative water potential, w (lower concentration of water). ②Water potential ( w ) ·Chemial potential =free energy(KJ)·mol-1 substance ·The chemical potential of water represents the free energy status of water. w W w W W w V V − − − = = 1 w 3 1 Chemical Potential of water N m mol Partial molar volume of water m mol − − = = 2 N m Pa − = = · w Unit: 1 bar=0.987 atm =105Pa =0.1MPa w pure water =OMPa w other solutions<OMPa w sea water=-2.6MPa w 1mol·L -1 sucrose solution=-2.5MPa ③ Water potential of cells ·What are the components of cell water potential ? ·A typical cell, its water potential components: Three major factors contribute to cell water potential. ( ) w s p g = + + ( ) s :The term ( ) s called the solute potential or the osmotic potential, represents the effect of dissolved solutes on water potential。Solutes reduce the free energy of water by diluting the water. s = −CiRT C concentration of the solution in moles per lit = er R=the gas constant (0.00831kg·MPa mol-1·K-1 ) T=absolute temperature(K) =degrees C+273 i=isotonic coefficient p :Pressure potential The term p is the hydrostatic pressure of the solution. Positive

pressure of the solution raise the water potential; p is called pressure potential=OMPappure water and solutionGravity potential. Gravity to move downward unless the force of gravity is opposedWg:by an equal and opposite force. The term g depends on the height (h) of the water above thereference-state water, the density of water (Pw )and acceleration due to gravity (g). In symbols, wewrite the followingVg=PughWhere P.g has a value of 0.01 MPa m-1Thus a vertical distance of 10m translates into a0.1MPa changeinwaterpotential.When dealing with water transport at the cell level the gravitational component (g )isgenerally omitted because it is neglible compared to the osmotic potential and the hydrostaticpressure。Thus, in these cases Equation can be simplified as follows.yw=y.+VpWater enters the cell along a water potential gradient@ Water the cell along a water potential gradientWatermovement between cell and cell.For example :A cellBcell,=-1.0 MPa元=-0.8 MPa,=+0.8 MPap=+0.4 MPa=-0.2 MPa=-0.4 MPaYw:A>BWaterFlow.A(High,)B(low w)Forexample?Unit: MPaABcDFEndP EndV,=-1.0Vw= 0.2V,= 0.6V=-0.8
pressure of the solution raise the water potential; p is called pressure potential. p pure water and solution =OMPa g : Gravity potential. Gravity to move downward unless the force of gravity is opposed by an equal and opposite force. The term g depends on the height (h) of the water above the reference-state water, the density of water ( PW )and acceleration due to gravity (g). In symbols, we write the following g w = P gh Where Pgw has a value of 0.01 MPa m-1 Thus a vertical distance of 10m translates into a 0.1 MPa change in water potential. When dealing with water transport at the cell level the gravitational component ( g )is generally omitted because it is neglible compared to the osmotic potential and the hydrostatic pressure。 Thus, in these cases Equation can be simplified as follows. w s p = + Water enters the cell along a water potential gradient ④ Water the cell along a water potential gradient Water movement between cell and cell. For example ①: A cell Bcell w : A>B Water Flow: A(High w )→B(low w ) For example②: Unit: MPa F End A 0.2 w = − B 0.6 w = − C 0.8 w = − D 1.0 w = − P End =-1.0 MPa p =+0.8 MPa w =-0.2 MPa =-0.8 MPa p =+0.4 MPa w =-0.4 MPa

:A>B>C>DWaterflow: F_H.o>PWater potential in the Plantwsowsemwlagwar
w : A>B>C>D Water flow: H O2 F P ⎯⎯⎯→ ⑤Water potential in the Plant w soil > w stem > w leaf > w air
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十三章 植物的抗性生理(hardiness physiology).doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十一章 植物的生殖生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十章 植物的生长生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第九章 光形态建成.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第十二章 植物的成熟和衰老生理.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第六章 植物体内有机物的运输.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第八章 植物生长物质 第一节 生长素类 第二节 赤霉素类 第三节 细胞分裂素类.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第八章 植物生长物质 第四节 乙烯 第五节 脱落酸 第六节 其它天然的植物生长物质 第七节 植物生长抑制物质.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第七章 细胞信号转导.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第四章 植物的呼吸作用 第三节 电子传递与氧化磷酸化 第四节 呼吸过程中能量的贮存和利用 第五节 呼吸作用的调节及控制 第六节 影响呼吸作用的因素 第七节 呼吸作用和农业生产.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第三章 光合作用 第三节 光合作用的机理 第四节 光呼吸 第五节 影响光合作用的因素 第六节 植物对光能利用.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第四章 植物的呼吸作用 第一节 呼吸作用的概念和生理意义 第二节 植物的呼吸代谢途径.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第五章 植物体内有机物的代谢.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第三章 光合作用 第一节 光合作用的重要性 第二节 叶绿体及叶绿体色素.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第二章 植物的矿质营养 第三节 植物体对矿质元素的吸收 第四节 矿物质在植物体内的运输和分布 第五节 植物对氮、硫、磷的同化 第六节 合理施肥的生理基础.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第二章 植物的矿质营养 第一节 植物必需的矿质元素 第二节 植物细胞对矿质元素的吸收.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)绪论 第一章 植物的水分生理 第一节 植物对水分的需要 第二节 植物细胞对水分的吸收 第三节 植物根系对水分的吸收.doc
- 华南师范大学:《植物生理学》课程教学资源(教案讲义)第一章 植物的水分生理 第四节 蒸腾作用 第五节 植物体内水分的运输 第六节 合理灌溉的生理基础.doc
- 华南师范大学:《植物生理学》课程教学资源(授课教案)生物科学研究 第五次课教案 如何报告科学研究成果.doc
- 华南师范大学:《植物生理学》课程教学资源(授课教案)生物科学研究 第四次课教案 如何撰写科学论文.doc
- 华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter Two Mineral Nutrition of Plant.doc
- 华南师范大学:《植物生理学》课程教学资源(英文教案)Chapter Three Photosynthesis.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验1 植物细胞质壁分离和复原现象的观察.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验2 渗透作用现象观察.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验3 植物细胞水势.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验4 植物组织水势的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验5 钾离子对气孔开度的影响.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验6 蒸腾速率的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验7 植物的溶液培养.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验8 植物硝态氮的比色测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验11 叶绿体.光和CO2是光合作用的必要条件.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验10 叶绿体色素的提取分离及其性质鉴定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验12 叶绿体的分离.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验9 硝酸还原酶活性的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验15 植物组织中可溶性糖含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验16 蛋白质含量测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验14 叶绿素a和b含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验13 离体叶绿体对染料的还原作用.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验18 水果和蔬菜中维生素C含量的测定.doc
- 华南师范大学:《植物生理学》课程教学资源(实验指导)实验17 粗脂肪的定量测定.doc