《高等数学》课程教学课件(讲稿)9-1-8曲面的法线与切平面

第八讲 空间曲面的法线与切平面
多元函数微分法及其应用 第八讲 空间曲面的法线与切平面

多元函数微分法及其应用 1.空间曲面的法线与切平面 设有光滑曲面公:F(z)=0 通过其上定点M(xo,yo,zo)任意引一条光滑曲线 x=φ(),y=(t),乙=ω(t0), 设t=t。对应点M,且 φ(to),Ψ(t),ω(t) 不全为0.则 点M的切向量为 T=(φ(o),Ψ(o),w() M x-xo y-yo Z-Zo 切线方程为 Φ'(to) ψ'(to) ω'(to) 注意:∑上过点M的任何曲线在该点的切线都在同一平面上, 此平面称为在该点的切平面
多元函数微分法及其应用 1.空间曲面的法线与切平面 设 有光滑曲面 ᵯ : ᵃ (ᵆ ,ᵆ ,ᵆ) = 0 设 ᵆ = ᵆ 0 ᵱ ′ ( ᵆ 0 ), ᵱ ′ ( ᵆ 0 ), ᵱ ′ ( ᵆ 0 ) 切线方程为 不全为0 . 则 在 ᵮ :ᵆ = ᵱ (ᵆ), ᵆ = ᵱ (ᵆ), ᵆ = ᵱ (ᵆ) , 且 任意引一条光滑曲线 ᵄ ᵮ 注意: 此平面称为 在该点的切平面. 在同一平面上. ᵄ = (ᵱ ′ ( ᵆ 0 ), ᵱ ′ ( ᵆ 0 ), ᵱ ′ ( ᵆ 0 ))

多元函教微分法及其应用 曲面∑在点M的法向量 n=(f(KY3o),F,Ko'oo,Fo'0o》 切平面方程 F,(yox-xo +F,'o0-yo) +F.(XoYoo)(z-Zo)=O 法线方程 x-xo y-yo Z-Zo Fx(xo,yo,Zo) E(xo,y0,Z0)F2(x0,y0,Z0)
多元函数微分法及其应用 ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) 法线方程 + ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) + ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) = 0 切平面方程 ᵅ = (ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 ), ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 ), ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )) ᵄ ᵅ

多元函数微分法及其应用 特别,当光滑曲面Σ的方程为显式z=f(x,y)时,令 F(xyz)=f(xy)-z 则在点(x,y,z),F=f,F,=∫ 故当函数f(x,y)在点(xo,yo)有连续偏导数时,曲面 Σ在点(xYo)有 切平面方程 2-。=f(x0)x-x0) +f(xoYo)(y-Yo) x-xo y-yo 法线方程 2 Z-Zo fx(xo,yo) fy (xo,yo) -1
多元函数微分法及其应用 ᵅ ᵆ ( ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) 曲面 时, ᵃ (ᵆ ,ᵆ ,ᵆ) = ᵅ(ᵆ ,ᵆ ) − ᵆ 法线方程 ᵃ ᵆ = ᵅ ᵆ , 令 ᵯ 在点 (ᵆ 0 , ᵆ 0 , ᵆ 0 ) 有 有连续偏导数时, + ᵅ ᵆ ( ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) ᵆ − ᵆ 0 = ᵃ ᵆ = ᵅ ᵆ , 切平面方程

多元函教微分法及其应用 用α,B,y表示法向量的方向角,并假定法向量方向 向上,则y为锐角。 法向量n=(-∫。,y,-寸代。,1) 将fx(xo,yo),(xo,yo)分别记为fx,则 法向量的方向余弦: -fx -fy cosa 1+2+62 V1+2+62 1 cosy= 1+f2+62
多元函数微分法及其应用 法向量 法向量的方向余弦: 表示法向量的方向角, 并假定法向量方向 则 向上, ᵅ = ( −ᵅ ᵆ ( ᵆ 0 , ᵆ 0 ), −ᵅ ᵆ ( ᵆ 0 , ᵆ 0 ), 1)

多元函数微分法及其应用 2 例1. 2 求球面+2y+3z=36 在点(1,2,3)处的切 平面及法线方程 2 2 解:令F(z)=x+2y+3z-36 法向量 元=(2x,4y,6z) 元 =(2,8,18) (1,2,3) 所以球面在点(1,2,3)处有: 切平面方程 2(x-1)+8(6y-2)+18(z-3)=0 即 x+4y+9z-36=0 法线方程 x-1y-2z-3 1 4 9
多元函数微分法及其应用 例1. 求球面ᵆ 2 + 2ᵆ 2 + 3ᵆ 2 = 36 在点(1 , 2 , 3) 处的切 平面及法线方程. 解: ᵃ (ᵆ ,ᵆ ,ᵆ) = ᵆ 2 + 2ᵆ 2 + 3ᵆ 2 − 36 所以球面在点 (1 , 2 , 3) 处有: 切平面方程 2(ᵆ − 1) 即 ᵆ + 4ᵆ + 9ᵆ − 36 = 0 法线方程 + 8(ᵆ − 2) + 18(ᵆ − 3) = 0 法向量 令

多元函教微分法及其应用 课堂小 1.曲面的切平面与法线 1)隐式精远.空间光滑曲面公:F2)=0 曲面在点M心 的法向量 i=(Fx(x0,y0,Zo),F,(x0,y0,Z0),F2(x0,y0,Z0) 切平面方程 F(oo)(x-xo)+F,(oYoFo)(y-yo) +FKY2-2=0 法线方程 x-xo y-yo Z-Zo Fx(xo,yo,Zo) F,(x0,yO,20)
多元函数微分法及其应用 课 堂 小 结 空间光滑曲面 ᵯ : ᵃ (ᵆ ,ᵆ ,ᵆ) = 0 曲面 在点 法线方程 ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) + ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) 1) 隐式情况 . ᵄ ( ᵆ 0 , ᵆ 0 , ᵆ 0 ) 的法向量 + ᵃ ᵆ ( ᵆ 0 , ᵆ 0 , ᵆ 0 )(ᵆ − ᵆ 0 ) = 0 切平面方程 1. 曲面的切平面与法线

工作人员 总策划:卢自娟 主讲人:冀彦 脚本策划:卢自娟 李达玲 里提甫·玉素甫 黄光迪 张晗 彦
多元函数微分法及其应用 工 作 人 员 总策划:卢自娟 主讲人:冀 彦 脚本策划:卢自娟 李达玲 里提甫·玉素甫 黄光迪 张 晗 冀 彦
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学课件(讲稿)9-1-7曲线的切线与法平面.pdf
- 《高等数学》课程教学课件(讲稿)9-1-6隐函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)9-1-5复合函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)9-1-3多元函数的偏导数.pdf
- 《高等数学》课程教学课件(讲稿)9-1-1区域的有关概念.pdf
- 《高等数学》课程教学课件(讲稿)9-1-12最小二乘法.pdf
- 《高等数学》课程教学课件(讲稿)9-1-11多元函数求条件极值.pdf
- 《高等数学》课程教学课件(讲稿)9-1-10多元函数求极值.pdf
- 《高等数学》课程教学课件(讲稿)8.1-9空间曲线.pdf
- 《高等数学》课程教学课件(讲稿)8.1-8曲面方程2/2.pdf
- 《高等数学》课程教学课件(讲稿)8.1-7曲面方程1/2.pdf
- 《高等数学》课程教学课件(讲稿)8.1-6空间直线.pdf
- 《高等数学》课程教学课件(讲稿)8.1-5平面夹角与距离公式.pdf
- 《高等数学》课程教学课件(讲稿)8.1-4平面方程.pdf
- 《高等数学》课程教学课件(讲稿)8.1-3点积与叉积.pdf
- 《高等数学》课程教学课件(讲稿)8.1-2空间直角作标系.pdf
- 《高等数学》课程教学课件(讲稿)8.1-1向量及其线性运算2/2.pdf
- 《高等数学》课程教学课件(讲稿)7-1微分方程的基本概念2/2.pdf
- 《高等数学》课程教学课件(讲稿)6-7平面曲线的弧长.pdf
- 《高等数学》课程教学课件(讲稿)6-6旋转体体积.pdf
- 《高等数学》课程教学课件(讲稿)9-1-9方向导数与梯度.pdf
- 《高等数学》课程教学课件(讲稿)12-2-1正项级数的审敛法.pdf
- 《高等数学》课程教学课件(讲稿)12-2-2正项级数的审敛法.pdf
- 《高等数学》课程教学课件(讲稿)12-2-3正项级数的审敛法.pdf
- 《高等数学》课程教学课件(讲稿)12-3-1幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-3-2幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-3-3幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-3-4幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-4-1函数展开成幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-4-2函数展开成幂级数.pdf
- 《高等数学》课程教学课件(讲稿)12-4-3函数展开成幂级数的应用.pdf
- 《高等数学》课程教学课件(讲稿)12-4-4欧拉公式.pdf
- 《高等数学》课程教学课件(讲稿)12-5-1傅里叶级数.pdf
- 《高等数学》课程教学课件(讲稿)12-5-2傅里叶级数的计算1/3.pdf
- 《高等数学》课程教学课件(讲稿)12-5-3傅里叶级数的计算2/3周期延拓.pdf
- 《高等数学》课程教学课件(讲稿)12-5-4傅里叶级数的计算3/3奇偶延拓.pdf
- 《高等数学》课程教学课件(讲稿)12-6-1一般周期函数的傅里叶级数1/2.pdf
- 《高等数学》课程教学课件(讲稿)12-6-2一般周期函数的傅里叶级数2/2.pdf
- 《复变函数与积分变换》课程教学大纲(课程标准).pdf
- 《复变函数与积分变换》课程教学课件(讲稿)1-1-1复数的概念.pdf