中国高校课件下载中心 》 教学资源 》 大学文库

《计量经济学》课程教学资源(实验指导)实验六 多重共线性

文档信息
资源类别:文库
文档格式:DOC
文档页数:5
文件大小:291KB
团购合买:点击进入团购
内容简介
《计量经济学》课程教学资源(实验指导)实验六 多重共线性
刷新页面文档预览

实验六多重共线性【实验目的】掌握多重共线性的检验及处理方法【实验内容】建立并检验我国私人汽车拥有量预测模型。数据如表6-1所示。表 6-1中国私人汽车拥有量及影响因素数据年份私人汽车国民收入钢材产量公路里程营运汽车城镇居民X2拥有量X1X3(万消费X5(亿拥有量X4(亿元)(万吨)公里)元)Y(万辆)(万辆)198528. 4927.739040.73693.094.241877.8198696.2829.2734.7110274.44058.02242.9198742.2912050.64386.098.2230.322697.2198860.4215036.84689.099.9630.693694.1198973.1217000.94859.0101.4330.854266.9199081.6218718.35153.0102.8331.304767.8199196.0421826.25638.0104.1131.675648.61992118.2026937.36697.0105. 6730.877166.61993155.7735260.07716.0108.3528. 969554.11994111.7827.97205.4248108.58428.012968.91995249.9659810.58979.8115.7027. 4917098.1199628.81289.6770142.59338.0118.5820048.81997358.3678060.89978.9122.6429.8922345.71998423.6583024.310737.8127.8531.8824757.31999533.8888479.212109.8135.17501.7727336.32000625.3398000.513146.0140.27702.8230707.22001770.78108068.216067.6169.80764. 3933422.22002968.98119095.719251.6176.52826.3436299.620031219.23135174.024108.0180.98924. 6440528.720041481.66159586.731975.7187.071067.1846282.920051848.07184088.637771.1334.52733.2251989.320062333.32213131.746893.4345.70802.5859005.62007251483.256560.9358.37849.2271487.82876.22【实验步骤】一、检验多重共线性1.相关系数检验利用相关系数可以分析解释变量之间的两两相关情况。在Eviews软件中可以直接计算相关系数矩阵。X4X5本例中,在Eviews软件命令窗口中键入:CORRX1X2X3或在包含所有解释变量的数组窗口中点击View\Correlations,其结果如图6-1所示。由相关系数矩阵可以看出,解释变量之间的相关系数均较高,即解释变量之间时高度相关的。1

1 实验六 多重共线性 【实验目的】 掌握多重共线性的检验及处理方法 【实验内容】 建立并检验我国私人汽车拥有量预测模型。数据如表 6-1 所示。 表 6-1 中国私人汽车拥有量及影响因素数据 【实验步骤】 一、检验多重共线性 ⒈相关系数检验 利用相关系数可以分析解释变量之间的两两相关情况。在 Eviews 软件中可以直接计算 相关系数矩阵。 本例中,在 Eviews 软件命令窗口中键入:COR X1 X2 X3 X4 X5 或在包含所有解释变量的数组窗口中点击 View\Correlations,其结果如图 6-1 所示。 由相关系数矩阵可以看出,解释变量之间的相关系数均较高,即解释变量之间时高度相关的。 年份 私人汽车 拥有量 Y(万辆) 国民收入 X1 (亿元) 钢材产量 X2 (万吨) 公路里程 X3(万 公里) 营运汽车 拥有量 X4 (万辆) 城镇居民 消费 X5(亿 元) 1985 28.49 9040.7 3693.0 94.24 27.73 1877.8 1986 34.71 10274.4 4058.0 96.28 29.27 2242.9 1987 42.29 12050.6 4386.0 98.22 30.32 2697.2 1988 60.42 15036.8 4689.0 99.96 30.69 3694.1 1989 73.12 17000.9 4859.0 101.43 30.85 4266.9 1990 81.62 18718.3 5153.0 102.83 31.30 4767.8 1991 96.04 21826.2 5638.0 104.11 31.67 5648.6 1992 118.20 26937.3 6697.0 105.67 30.87 7166.6 1993 155.77 35260.0 7716.0 108.35 28.96 9554.1 1994 205.42 48108.5 8428.0 111.78 27.97 12968.9 1995 249.96 59810.5 8979.8 115.70 27.49 17098.1 1996 289.67 70142.5 9338.0 118.58 28.81 20048.8 1997 358.36 78060.8 9978.9 122.64 29.89 22345.7 1998 423.65 83024.3 10737.8 127.85 31.88 24757.3 1999 533.88 88479.2 12109.8 135.17 501.77 27336.3 2000 625.33 98000.5 13146.0 140.27 702.82 30707.2 2001 770.78 108068.2 16067.6 169.80 764.39 33422.2 2002 968.98 119095.7 19251.6 176.52 826.34 36299.6 2003 1219.23 135174.0 24108.0 180.98 924.64 40528.7 2004 1481.66 159586.7 31975.7 187.07 1067.18 46282.9 2005 1848.07 184088.6 37771.1 334.52 733.22 51989.3 2006 2333.32 213131.7 46893.4 345.70 802.58 59005.6 2007 2876.22 251483.2 56560.9 358.37 849.22 71487.8

回×Group: UHIIILEDForkfile: UHIIILED::UntitledyView Proc Object Print Name Freeze Sample Sheet Stats SpecCorrelationX1X2X3X4X5X11.0000000.9682940.9356770.8458210.998067人X20.9682941.0000000.9712320.7884440.953784X30.9356770.9712320.9180141.0000000.728936X40.8458210.7884440.7289361.0000000.865167X50.9980670.9537840.9180140.8651671.000000图6-1解释变量相关系数矩阵2.辅助回归方程检验当解释变量多余两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模型来检验多重共线性。本例中,在Eviews软件命令窗口中键入:LSX1CX2X3X4X5LSX2CX1X3X4X5LSX2X3CX1X4X5LSX4CX1X2X3X5LSX2X3X4X5CX1对应的回归结果如图6-2到图6-6所示。Equation:UHIIILEDTorkfile:UNIIILED::Untitledi口回区View Proc Object Print Name FreezeEstimateForecast Stats Resids人Dependent Variable:X1Method:LeastSquaresDate:08/12/11Time:16:01Sample:19852007Includedobservations:23Prob.VariableCoefficientStd.Errort-Statisticc0.8700-213.47571286.251-0.165967X20.6908050.1206725.7246700.0000X30.408214.2757116.856410.846901X4-7.8847741.692105-4.6597430.0002X53.0461870.06605446.116870.000080973.90R-squared0.999628MeandependentvarAdjusted R-squared0.999546S.D.dependent var69487.87S.E.ofregression1480.79917.62821AkaikeinfocriterionSum squared resid39469773Schwarzcriterion17.87506-197.724417.69029LoglikelihoodHannan-Quinn criterF-statistic12106.741.677990Durbin-Watson stat0.000000Prob(F-statistic)A图 6-22

2 图 6-1 解释变量相关系数矩阵 ⒉辅助回归方程检验 当解释变量多余两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模 型来检验多重共线性。本例中,在 Eviews 软件命令窗口中键入: LS X1 C X2 X3 X4 X5 LS X2 C X1 X3 X4 X5 LS X3 C X1 X2 X4 X5 LS X4 C X1 X2 X3 X5 LS X5 C X1 X2 X3 X4 对应的回归结果如图 6-2 到图 6-6 所示。 图 6-2

Yorkfile:UNIIILED::UntitledVXEquation:UNIIILEDView Proc ObjectPrintName FreezeEstimate Forecast Stats Resids人Dependent Variable:X2Method:LeastSquaresDate:08/12/11Time:16:02Sample:19852007Includedobservations:23Prob.VariableCoefficientStd.Errort-Statisticc-2705.5311354.455-1.9975050.0611X10.9343770.1632195.7246700.0000X325.7265519.049091.3505400.1936X47.5418662.3204430.00443.250183X5-2.7488780.00010.5323395.163770R-squared0.98862615314.59MeandependentvarAdjusted R-squared0.986098S.D.dependentvar14606.581722.18317.93023S.E.ofregressionAkaike infocriterionSumsquaredresid53386485Schwarzcriterion18.17708-201.197717.99231Log likelihoodHannan-Quinn criter.F-statistic391.14061.455338Durbin-Watson statProb(F-statistic)0.000000Y图 6-3Equation:UHIILEDForkfile:UHIIILED::UntitledView Proc Object Print Name FreezeEstimateForecast Stats Resids人Dependent Variable:X3Method:LeastSquaresDate:08/12/11Time:16:04Sample:19852007Included observations:23Prob.VariableCoefficientStd.Errort-StatisticC0.000068.256717.2614969.399813X10.0026840.0031700.8469010.4082X20.0035760.0026481.3505400.1936X4-0.0009790.034464-0.0284130.9776X5-0.0079920.009706-0.8234320.4210R-squared0.949035Meandependentvar153.74090.937709S.D. dependent var81.35776Adjusted R-squaredS.E.ofregression20.305339.049304Akaikeinfocriterion7421.5159.296150SumsquaredresidSchwarzcriterion-99.066999.111385Log likelihoodHannan-Quinncriter83.795922.232061F-statisticDurbin-Watson statProb(F-statistic)0.000000V图 6-43

3 图 6-3 图 6-4

Equation:UNIIILEDorkfile:UHIIILED::UntitledVxView Proc Object PrintName Freeze Estimate Forecast stats ResidsADependent Variable:X4Method:Least SquaresDate:08/12/11Time:16:06Sample:19852007Includedobservations:23Prob.VariableCoefficientStd.Errort-Statisticc0.828626.48351120.55400.219682X1-0.0693430.014881-4.6597430.0002X20.0490370.0150873.2501830.0044X31.6119270.9776-0.045800-0.028413X50.00010.2219600.0428375.181456R-squared0.898430329.9939Meandependent varAdjusted R-squared0.875858S.D.dependent var394.1328138.867712.89458S.E.ofregressionAkaike infocriterionSum squared resid347116.413.14143Schwarz criterion-143.287712.95666Log likelihoodHannan-Quinn criter.F-statistic39.804251.412214Durbin-Watson statProb(F-statistic)0.000000M图 6-5Equation:UNIIILEDYorkfile:UNIIILED::UntitlediView Proc Object Print Name FreezeEstimateForecast Stats Resids人DependentVariable:X5Method:LeastSquaresDate:08/12/11Time:16:07Sample:19852007Includedobservations:23VariableCoefficientStd.Errort-StatisticProb.c88.12715420.28270.2096850.8363X10.3255240.0070590.000046.11687X2-0.2171780.042058-5.1637700.0001X35.516121-0.8234320.4210-4.542149X42.6970620.00010.5205225.181456R-squared0.99952723312.80MeandependentvarAdjustedR-squared0.999422S.D.dependentvar20140.60S.E.ofregression484.071415.39200Akaike infocriterionSum squared resid4217853.15.63885Schwarz criterion-172.008015.45408Log likelihoodHannan-Quinncriter.F-statistic9516.6321.718180Durbin-Watsonstat0.000000Prob(F-statistic)V图 6-64

4 图 6-5 图 6-6

上述每个回归方程的F检验值都非常显著,方程回归系数的T检验值表明:X1与X2、X4、X5,X2与X1、X4、X5,X4与X1、X2、X5,X5与X1、X2、X4的T检验值较大,这些变量之间可能相关程度较高。二、利用逐步回归方法处理多重共线性1.建立基本的一元回归方程直接利用命令CORYX1X2X3X4X5。和Y相关系数最大的解释变量作为基本的一元回归方程的解释变量。我们发现Y和X2的相关系数最大,2.逐步引入其它变量,确定最适合的多元回归方程(回归结果如表6-2所示)表6-2私人汽车拥有量预测模型逐步回归结果X4R?模型X1x2X3X5R?0. 05440.995Y=f (X2)(66. 08910.9952070.00180.04600.996Y=f (X2, X1)(3.1396(16.64610.99685))0.05290. 27710. 994Y=f (X2, X3)(15.00710.99538(0. 4376)0. 05110.15420. 997(50.7466Y=f (X2, X4)0.9974(4.1303)270.04680.00580.996(21.63990.9972Y=f (X2, X5)9(3.7083)0.0090.0476Y=f (X2, X4, X0.11820.997(1.5760(19.34380.99771)(2. 7688)4))0.0464Y=f (X2, X4, X0.81380. 17060. 997(16.30840.99783)4(1.7736)(4.6525))0.0479Y=f (X2, X4, X0.10460.00320.997(23. 78210.9978 5)5(2. 3379)(1.8116))所以,建立的多元回归模型为:y=-197.3707+0.0479*X2+0.1046*X4+0.0032*X55

5 上述每个回归方程的 F 检验值都非常显著,方程回归系数的 T 检验值表明:X1 与 X2、 X4、X5,X2 与 X1、X4、X5,X4 与 X1、X2、X5,X5 与 X1、X2、X4 的 T 检验值较大,这些变 量之间可能相关程度较高。 二、利用逐步回归方法处理多重共线性 ⒈建立基本的一元回归方程 直接利用命令 COR Y X1 X2 X3 X4 X5。和 Y 相关系数最大的解释变量作为基本 的一元回归方程的解释变量。我们发现 Y 和 X2 的相关系数最大。 ⒉逐步引入其它变量,确定最适合的多元回归方程(回归结果如表 6-2 所示) 表 6-2 私人汽车拥有量预测模型逐步回归结果 模型 X1 X2 X3 X4 X5 Y=f(X2) 0.0544 (66.0891 ) 0.9952 0.995 0 Y=f(X2,X1) 0.0018 (3.1396 ) 0.0460 (16.6461 ) 0.9968 0.996 5 Y=f(X2,X3) 0.0529 (15.0071 ) 0.2771 (0.4376) 0.9953 0.994 8 Y=f(X2,X4) 0.0511 (50.7466 ) 0.1542 (4.1303) 0.9974 0.997 2 Y=f(X2,X5) 0.0468 (21.6399 ) 0.0058 (3.7083) 0.9972 0.996 9 Y=f(X2,X4,X 1) 0.009 (1.5760 ) 0.0476 (19.3438 ) 0.1182 (2.7688) 0.9977 0.997 4 Y=f(X2,X4,X 3) 0.0464 (16.3084 ) 0.8138 (1.7736) 0.1706 (4.6525) 0.9978 0.997 4 Y=f(X2,X4,X 5) 0.0479 (23.7821 ) 0.1046 (2.3379) 0.0032 (1.8116) 0.9978 0.997 5 所以,建立的多元回归模型为: y  = -197.3707 + 0.0479*X2 + 0.1046*X4+0.0032*X5 2 R 2 R

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档