上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 12 Signal generators and waveform-shaping circuit

Chapter 12 Signal generators andwaveform-shaping circuitsIntroduction12.1 Basic principles of sinusoidal oscillators12.2 RC oscillator circuits12.3 LC and crystal oscillators12.4 Bistable Multivibrators12.5 Generation of a standardized pulse-Themonostable multivibratorMicroelectronicCircuits
Microelectronic Circuits Chapter 12 Signal generators and waveform-shaping circuits Introduction 12.1 Basic principles of sinusoidal oscillators 12.2 RC oscillator circuits 12.3 LC and crystal oscillators 12.4 Bistable Multivibrators 12.5 Generation of a standardized pulse-The monostable multivibrator

Introduction(1)linear oscillators:employsapositive-feedbackloopconsistingofanamplifierandanRCorLCfrequency-selectivenetwork.(Section13.1-3)Thetwo(2)nonlinear oscillators or functiondifferentgenerators:approachesThe bistable multivibrator(Section 13.4)theastablemultivibrator (Section13.5)themonostablemultivibrator(Section13.6)MicroelectronicCircuits
Microelectronic Circuits Introduction The two different approaches (1)linear oscillators: employs a positive-feedback loop consisting of an amplifier and an RC or LC frequency-selective network. (Section 13.1-3) (2)nonlinear oscillators or function generators: • The bistable multivibrator(Section 13.4) • the astable multivibrator (Section 13.5) • the monostable multivibrator(Section 13.6)

The basic structure of sinusoidaloscillatorsAmplifier circuit:realize the energy controlFrequency-selectivenetwork:oscillatorThebasicfrequency is determinedstructureX, =XfPositive feedback loop:amplitude control : implementation of thenonlinear amplitude-stabilization mechanismMicroelectronicCircuits
Microelectronic Circuits The basic structure of sinusoidal oscillators The basic structure Amplifier circuit:realize the energy control Frequency-selective network:oscillator frequency is determined Positive feedback loop: amplitude control :implementation of the nonlinear amplitude-stabilization mechanism i f x = x

Basic Principles of SinusoidalOscillatorThe oscillator feedback loopAmplifierAFrequency-selectivenetworkβThe basic structure of a sinusoidal oscillator.Apositive-feedbackloopisformedbyanamplifier and a frequency-selective networkMicroelectronic Circuits
Microelectronic Circuits Basic Principles of Sinusoidal Oscillator ⚫ The oscillator feedback loop ⚫ The basic structure of a sinusoidal oscillator. ⚫ A positive-feedback loop is formed by an amplifier and a frequency-selective network

Basic Principles of SinusoidalOscillator Feedback signal X,is summed with apositive signThe gain-with-feedback isF:1模电课件\动摄品的产生exeA(s)Af(S)1- A(s)β(s)The oscillation criterion: Barkhausencriterion.L(jo) = A(joo)β(jo) = lPA+P=2nπMicroelectronic Circuits
Microelectronic Circuits Basic Principles of Sinusoidal Oscillator ⚫ Feedback signal xf is summed with a positive sign ⚫ The gain-with-feedback is ⚫ The oscillation criterion: Barkhausen criterion. 1 ( ) ( ) ( ( ) A s s A s A s f − = ) n L j A j j A 2 ( 0 ) ( 0 ) ( 0 ) 1 + = = =

Basic Principles of SinusoidalOscillator Nonlinear amplitude control> To ensure that oscillations will start, the Aβ isslightly greater than unity.> As the power supply is turned on, oscillationwill grown in amplitude.> When the amplitude reaches the desired level.the nonlinear network comes into action andcause the Aβ to exactly unity.Microelectronic Circuits
Microelectronic Circuits Basic Principles of Sinusoidal Oscillator ⚫ Nonlinear amplitude control ➢ To ensure that oscillations will start, the Aβ is slightly greater than unity. ➢ As the power supply is turned on, oscillation will grown in amplitude. ➢ When the amplitude reaches the desired level, the nonlinear network comes into action and cause the Aβ to exactly unity

The implementation of the nonlinearamplitude-stabilization mechanism The first approach makes use of a limitercircuitThe other mechanism for amplitude controlutilizes an element whose resistance canbe controlled by the amplitude of theoutput sinusoid.Microelectronic Circuits
Microelectronic Circuits The implementation of the nonlinear amplitude-stabilization mechanism ⚫ The first approach makes use of a limiter circuit ⚫ The other mechanism for amplitude control utilizes an element whose resistance can be controlled by the amplitude of the output sinusoid

A Popular Limiter Circuit for AmplitudeControl+VWhenviisclosetozero:RDiDi,D,is off v文R,RRiRRR;M0ONORR,+ R+ R?RR4RNBR+ RsR+RD2RVaMicroelectronicCircuits
Microelectronic Circuits A Popular Limiter Circuit for Amplitude Control 4 5 5 4 5 4 2 3 2 2 3 3 1 1 , 2 is off, R R R v R R R v V R R R v R R R v V v R R D D v B o A o I f o + + + = − + + + = = − When vi is close to zero:

A Popular Limiter Circuit for AmplitudeControl+VWhenvigoespositive,D1ison,D2isoffRDi文RRRM1DRRRR2MonthecontraryOvORRMR+VLR.R.NBD2RVaMicroelectronicCircuits
Microelectronic Circuits A Popular Limiter Circuit for Amplitude Control 3 3 2 2 4 4 5 5 1 on the contrary: 1 D D R R L V V R R R R L V V R R − + = − − + = + + When vi goes positive,D1 is on, D2 is off

A Popular Limiter Circuit for AmplitudeControlVOAVOAVR4SlopeSlope=Ri(R,llR.)RiRR,R0Ur0UR,SlopeRRRRVSlopeR?R.RsL(R,lR)SlopeRi(c)(b)>Transfercharacteristicofthelimitercircuit:>When R,is removed, the limiter turns into a comparator with thecharacteristicshownMicroelectronicCircuits
Microelectronic Circuits A Popular Limiter Circuit for Amplitude Control ➢Transfer characteristic of the limiter circuit; ➢When Rf is removed, the limiter turns into a comparator with the characteristic shown. = + + = − − + + − 5 4 5 4 2 3 2 3 1 1 R R V R R L V R R V R R L V D D
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 6 Differential and Multistage Amplifiers Introduction.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 5 Bipolar Junction Transistor(BJT).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 4 MOS Field-Effect Transistors(MOSFETs).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 3 Diodes(Functionality and Physical Operation).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)Chapter Introduction to Electronics.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)Introduction Analog Electronic Technology.pptx
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第一节 线性电路和叠加定理 第二节 等效分析法 第三节 戴维南定理与诺顿定理.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第一节 电路模型 第二节 电路变量.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第三节 连接约束关系 第四节 元件约束关系.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第五节 用两类约束求解电路 第六节 受控元件.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第二节 等效分析法.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第六节 运放电路分析.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第六节 二阶电路的固有响应.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第五节 完全响应的分解和叠加.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第一节 动态元件.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第二节 动态电路方程.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第四章 正弦稳态电路分析 第三节 两类约束关系的相量形式.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第四章 正弦稳态电路分析 第四节 阻抗与导纳.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第四节 三要素法.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第三节 初始值和直流稳态值的计算.pdf
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 7 Frequency Response.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 8 Feedback.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 9 output stages and power amplifiers.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 10 Analog intergrated circuits.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 5 Field-Effect Transistors(FETs).pptx
- 《通信集成电路设计》课程教学资源(文献资料)Quartus使用手册.pdf
- 《通信集成电路设计》课程教学课件(PPT讲稿)数字电路设计中的基本概念.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)代码编写技术.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)同步状态机设计.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)深入理解阻塞非阻塞.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第五章 常用Verilog语法之三.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第一章 概述(北京交通大学:周晓波).ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第二章 Verilog语法的基本概念.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第六章 常用Verilog语法之四.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第三章 常用Verilog语法之一.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第四章 常用Verilog语法之二.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)数字电路设计中的基本概念.pptx
- 《通信集成电路设计》课程教学课件(PPT讲稿)第六章 常用Verilog语法之四.ppt
- 北京航空航天大学出版社:《Verilog数字系统设计教程》书籍教材PDF电子版(第二版,编著:夏宇闻).pdf
- 《通信集成电路设计》课程教学课件(PPT讲稿)第五章 常用Verilog语法之三.ppt
