上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 6 Differential and Multistage Amplifiers Introduction

Chapter 6 Differential and+日Multistage Amplifiers1896Introduction6.1 The BJT differntial pair6.2Small-signal operationof theBJTdifferential amplifie6.3Othernonidealcharacteristicsofthedifferentialamplifier6.4MOS diffenrential amplifiers6.5Biasing in intergrated circuits6.6TheBJT differential amplifierwithactiveload6.9MultistageamplifiersMicroelectronicCircuits
Microelectronic Circuits Chapter 6 Differential and Multistage Amplifiers Introduction 6.1 The BJT differntial pair 6.2 Small-signal operation of the BJT differential amplifier 6.3 Other nonideal characteristics of the differential amplifier 6.4 MOS diffenrential amplifiers 6.5 Biasing in intergrated circuits 6.6 The BJT differential amplifier with active load 6.9 Multistage amplifiers

Introduction> The differential amplifier(pair) configuration is themost widely usedbuilding block in analogIC design.VClUC?BJT differential amplifieris the basis of a very-OOhigh-speedlogic circuitfamily, called emitter-UBUB2Ecoupled logic (ECL),Why?Microelectronic Circuits
Microelectronic Circuits Introduction ➢ The differential amplifier (pair) configuration is the most widely used building block in analog IC design. ➢ BJT differential amplifier is the basis of a veryhigh-speed logic circuit family, called emittercoupled logic (ECL). Why?

Reasons:uo++直接耦合u,=0uo放大电路.-(b)(a)Direct coupling between signal source and amplifierwill easily cause temperature Drift (zero drift)What shall we do?MicroelectronicCircuits
Microelectronic Circuits Reasons: Direct coupling between signal source and amplifier will easily cause temperature Drift (zero drift). What shall we do?

CCCCRR+uoC4ORoR.TuoR.VBBBBo(a)(b)VcCRpRT2RellRe.VBBVBB(c)CCCCRc2Rb2R.RbKK3T2TT1412iBliBIig2iE2VBBRRO-VBE(d)(e)
Microelectronic Circuits

Advantages There are 2 reasons for using differentialin preference to single-ended amplifiers(1) Differential circuits are much less sensitive to noiseand interference than single-ended circuits.(2) It enables us to bias the amplifier and to coupleamplifier stage without the need of bypass andcoupling capacitors which are impossible tofabricate economically by IC technologyMicroelectronicCircuits
Microelectronic Circuits Advantages ➢ There are 2 reasons for using differential in preference to single-ended amplifiers. (1) Differential circuits are much less sensitive to noise and interference than single-ended circuits. (2) It enables us to bias the amplifier and to couple amplifier stage without the need of bypass and coupling capacitors which are impossible to fabricate economically by IC technology

6.1 The BJTDifferential PairBasic Operation-l:Common-mode inputVco>The differential pair with a common-mode input signal VcM.RR>Two transistors are matched.>Current source with infinite outputresistanceO>CurrentIdivide equallybetweentwo+UCMtransistors.>The difference in voltagebetweenthe0.7UCAtwo collectoris zero.>Thedifferentialpairrejectsthecommon-mode input signal as long astwo transistors remain in active region-VEE(a)Microelectronic Circuits
Microelectronic Circuits 6.1 The BJT Differential Pair Basic Operation-1:Common-mode input ➢The differential pair with a commonmode input signal vCM. ➢Two transistors are matched. ➢Current source with infinite output resistance. ➢Current I divide equally between two transistors. ➢The difference in voltage between the two collector is zero. ➢The differential pair rejects the common-mode input signal as long as two transistors remain in active region

Basic Operation-2>The differential pair with aQIRCVCC“large" differential input signal.+IVoQ>Qi is on and Q2 is off.OftOn0.>Current I entirely flows in Qi+0.3VEE(b)Microelectronic Circuits
Microelectronic Circuits Basic Operation-2 ➢The differential pair with a “large” differential input signal. ➢Q1 is on and Q2 is off. ➢Current I entirely flows in Q1

Basic Operation-3Vcc>The differential pair with aVcaIRlarge differential input signal ofpolarity opposite to that in (b)QQ21VoOff>Q2 is on and Q, is off.OT10>Current I entirely flows in Q20VEE(c)Microelectronic Circuits
Microelectronic Circuits Basic Operation-3 ➢The differential pair with a large differential input signal of polarity opposite to that in (b). ➢Q2 is on and Q1 is off. ➢Current I entirely flows in Q2

Basic Operation-4:Difference-mode orDifference signalsIcC>The differential pair with asmall differential input signal V;RRlVeeRaAIRd>Small signal operation orRaVce=20AIRlinear amplifier.+AIRJAQ(small)>Assuming the bias currentsource I to be ideal and thus Iremains constant with thechange in VcM.>Increment in Q andVEEdecrement in Q2(d)Microelectronic Circuits
Microelectronic Circuits Basic Operation-4:Difference-mode or Difference signals ➢The differential pair with a small differential input signal vi . ➢Small signal operation or linear amplifier. ➢Assuming the bias current source I to be ideal and thus I remains constant with the change in vCM. ➢Increment in Q1 and decrement in Q2

Large-Signal Operation(VBI-V15e2E1α(VB2-VELinear regionIVTe~E2α1.01iElic2iclC11(VB2-VB1)+iE210.8/VTE11+e1iE20.6(VB1-VB2)ien+ie2/VT1+e0.4=I+ig2iEl0.21VEYH(VB2-VB1)/0VT-2028-8-6-44101+e106Vid1Normalized differential input voltage,E2(VB1-VB2)//VT1+eMicroelectronic Circuits
Microelectronic Circuits Large-Signal Operation ( ) ( ) ( ) ( ) ( ) ( ) T B B T B B T B B T B B T B E T B E V E v v V E v v E E V v v E E E V v v E E E V v v S E V v v S E e I i e I i i i I e i i i e i i i e I i e I i 1 2 2 1 1 2 2 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 2 1 2 1 2 1 − − − − − − + = + = + = + = + + = +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 5 Bipolar Junction Transistor(BJT).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 4 MOS Field-Effect Transistors(MOSFETs).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 3 Diodes(Functionality and Physical Operation).pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)Chapter Introduction to Electronics.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)Introduction Analog Electronic Technology.pptx
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第一节 线性电路和叠加定理 第二节 等效分析法 第三节 戴维南定理与诺顿定理.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第一节 电路模型 第二节 电路变量.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第三节 连接约束关系 第四节 元件约束关系.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第一章 基本概念和基本规律 第五节 用两类约束求解电路 第六节 受控元件.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第二节 等效分析法.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第二章 线性电路分析方法 第六节 运放电路分析.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第六节 二阶电路的固有响应.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第五节 完全响应的分解和叠加.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第一节 动态元件.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第二节 动态电路方程.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第四章 正弦稳态电路分析 第三节 两类约束关系的相量形式.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第四章 正弦稳态电路分析 第四节 阻抗与导纳.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第四节 三要素法.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第三章 动态电路分析 第三节 初始值和直流稳态值的计算.pdf
- 北京交通大学:《电路 Circuits》课程教学课件(讲稿)第四章 正弦稳态电路分析 第五节 正弦电路的相量分析.pdf
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 12 Signal generators and waveform-shaping circuit.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 7 Frequency Response.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 8 Feedback.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 9 output stages and power amplifiers.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 10 Analog intergrated circuits.pptx
- 上海交通大学:《模拟电子技术》课程教学资源(PPT课件)chapter 5 Field-Effect Transistors(FETs).pptx
- 《通信集成电路设计》课程教学资源(文献资料)Quartus使用手册.pdf
- 《通信集成电路设计》课程教学课件(PPT讲稿)数字电路设计中的基本概念.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)代码编写技术.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)同步状态机设计.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)深入理解阻塞非阻塞.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第五章 常用Verilog语法之三.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第一章 概述(北京交通大学:周晓波).ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第二章 Verilog语法的基本概念.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第六章 常用Verilog语法之四.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第三章 常用Verilog语法之一.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)第四章 常用Verilog语法之二.ppt
- 《通信集成电路设计》课程教学课件(PPT讲稿)数字电路设计中的基本概念.pptx
- 《通信集成电路设计》课程教学课件(PPT讲稿)第六章 常用Verilog语法之四.ppt
- 北京航空航天大学出版社:《Verilog数字系统设计教程》书籍教材PDF电子版(第二版,编著:夏宇闻).pdf
