《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L11_12_FUZZY STOCHASTIC ANALYSIS

ProcessingofFuzzySetstogetherwithRandom VariablesFUZZYSTOCHASTICANALYSISConcept{区(, t), 区(, t), x(, t), 区(, t)) → (Z(且, t), P(t))fuzzyfuzzyfuzzy randomvariablessafety levelvariablesdeterministicrandomfuzzy stochasticparametersquantitiesstructuralresponsesdepending on temporal and spatial coordinatesfuzzyanalysisα-level optimization with modified evolution strategy(in the combined space of fuzzy structural parametersand fuzzy distribution parameters)repeated stochastic analysisefficient stochasticrepresentations and Monte Carlo techniquesrepeateddeterministicstructuralanalysis,responsesurfaceapproximationMichael Beer1/7
Michael Beer 1 / 7 FUZZY STOCHASTIC ANALYSIS Concept repeated deterministic structural analysis, response surface approximation repeated stochastic analysis, efficient stochastic representations and Monte Carlo techniques fuzzy analysis, α-level optimization with modified evolution strategy (in the combined space of fuzzy structural parameters and fuzzy distribution parameters) Processing of Fuzzy Sets together with Random Variables fuzzy stochastic structural responses depending on temporal and spatial coordinates {x(θ, t), x(θ, t), X(θ, t), X(θ, t)} {Z(θ, t), Pf (t)} ~ ~ ~ → ~ • deterministic parameters fuzzy variables random quantities fuzzy random variables fuzzy safety level

Processingof FuzzySets togetherwithRandom VariablesFUZZYSTOCHASTICANALYSISExample:reliabilityanalysisPk12 =2Pu = (5/6)-Mpl1=3mMaterial:steelSt37Crosssection:rolledshapeIPE240fy: log normalP: Ex-Max-Type IFfy,min = 19.9.104 kN/m2mp=kNmf=28.8.104kN/m2Op=kNO = kN/m2MichaelBeer2/7
Michael Beer 2 / 7 FUZZY STOCHASTIC ANALYSIS Example: reliability analysis Processing of Fuzzy Sets together with Random Variables P: Ex-Max-Type I mP = kN ~ σP = kN ~ fy: log normal fy,min = 19.9·104 kN/m2 mf = 28.8·104 kN/m2 ~ σf = kN/m2 Pu = (5/6)·Mpl

Processingof FuzzySets togetherwith Random VariablesFUZZYSTOCHASTICANALYSISExample:reliabilityanalysisreliabilityindexF,(X) Aμ(B) 41.001.00.750.50?load P0.50.250.00607040505247X, [kN]0.03.1313.4133.6143.7984.113βF2(x2)1.00mp=47kN0.75mp=52kNU=1Op=4.5kNOp=6.0kN0.50-yield=Of=2.8kN/m2Of= 2.2 kN/m20.25stressf0.0022.034.0X [10°kN/m]25.826.028.830.0MichaelBeer3/7
Michael Beer 3 / 7 FUZZY STOCHASTIC ANALYSIS Example: reliability analysis Processing of Fuzzy Sets together with Random Variables load P yield stress fy reliability index mP = 52 kN σP = 6.0 kN σf = 2.8 kN/m2 mP = 47 kN σP = 4.5 kN σf = 2.2 kN/m2

ExamplesEXAMPLE1-RELIABILITYANALYSISReinforcedconcreteframev.PVOv.PVOv'Po6.00 mPH344016loadfactorfuzzy201641600'8fuzzyPH=10kNrandomPvo = 100 kNcrosssection500/35010kN/mPo=KQ18217LoadingProcesssimultaneous processing ofdead loadimprecisionanduncertainty.horizontal load PH.vertical loadsv.PvoandvPvo4/7MichaelBeer
Michael Beer 4 / 7 EXAMPLE 1 − RELIABILITY ANALYSIS 3 4 1 2 PH ν·PV 0 ν·p0 4 ø 16 4 ø 16 2 ø 16 6.00 m 8.00 Loading Process • dead load horizontal load PH • vertical loads ν·PV 0 and ν·pV 0 • ν·PV 0 PH = 10 kN PV 0 = 100 kN p0 = 10 kN/m fuzzy fuzzy random cross section 500/350 ν – load factor Reinforced concrete frame kφ kφ simultaneous processing of imprecision and uncertainty Examples

ExamplesEXAMPLE1-RELIABILITYANALYSISStructural responseSafetyLevelfuzzyfailureload(limitstate)fuzzyreliabilityindex(fuzzy-FORM)traditional,μ(β)μ(vu)req_β =3.8crisp safetylevel1.01.0:Bβ1Pr = Φ(-β)0.4β20.50.03.945.212.546.597.560.0β2 < 3.8 = req_β1≥3.8=req_βD6.437.247.63Vworstandbest case resultsforvarious intensitiesof imprecisionmaximumintensityofimprecisiontomeetreguirementsrequiredreductionofinputimprecision5/7MichaelBeer
Michael Beer 5 / 7 EXAMPLE 1 − RELIABILITY ANALYSIS 5.21 β1 ≥ 3.8 = req_β ~ β2 < 3.8 = req_β ~ β1 ~ β2 ~ 5.21 traditional, crisp safety level 6.59 7.56 β µ(β) 1.0 0.4 0.0 2.54 3.94 req_β = 3.8 β ~ µ(νu) 1.0 0.0 6.43 7.24 0.5 7.63 ν • fuzzy failure load (limit state) Safety Level • fuzzy reliability index (fuzzy-FORM) Structural response worst and best case results for various intensities of imprecision maximum intensity of imprecision to meet requirements required reduction of input imprecision Pf = Φ(−β) Examples

ExamplesEXAMPLE2-RELIABILITYANALYSISSimplesteelplatec(t,E)T=15°C,t=2.5aload,resistance,and c(t,E) randomQb(.) e [0.9,1.1]FailureprobabilityNp=45beta,CaseIbeta,Case IIbeta,Case III0.0198Nb = 2,000一interval× b() = 1.00.01990.01960.01290.01310.0128Pu0.0208E[P,]0.0126P0.0070.0110.0150.0196/7MichaelBeer
Michael Beer 6 / 7 EXAMPLE 2 − RELIABILITY ANALYSIS Simple steel plate Examples c(t,E) Q T = 15°C, t = 2.5 a load, resistance, and c(t,E) random b(.) ∈ [0.9,1.1] 0.007 0.011 0.015 0.019 Probability of Failure Beta (Case I) Beta (Case II) Beta (Case III) interval deterministic 0.0196 0.0198 0.0199 0.0208 0.0126 0.0128 0.0131 0.0129 E Pf u Pf beta, Case I beta, Case II beta, Case III interval b(.) = 1.0 0.007 0.011 0.015 0.019 Pf Failure probability Nb = 2,000 Nb = 45

ExamplesEXAMPLE2-RELIABILITYANALYSISFuzzybiasfactorFuzzyfailureprobabilityseries of. 6() = (0.8,1.0,1.2)correspondingN, = 208intervals1.01.0limit0.50.50.00.000.010.020.81.01.2 b(.)0.03Pfsensitivities of P with respect to the interval size of br(.)acceptableintervalsforparameterscanbedeterminedindications to collect additional specific informationto reducetheinputimprecisiontoanacceptablelevel7/7MichaelBeer
Michael Beer 7 / 7 EXAMPLE 2 − RELIABILITY ANALYSIS Examples Fuzzy bias factor b 081012 ( ) = . .,.,. sensitivities of PfI with respect to the interval size of bI(.) acceptable intervals for parameters can be determined • Fuzzy failure probability 0 0.5 1 0.80.8 0.9 1.01 1.1 1.21.2 b(.) µ(b) 0 0.5 1 0.000 0.010 0.020 0.030 0.0 0.5 1.0 1.0 0.5 0.0 0 0.01 0.02 0.03 Pf µ(Pf) Nb = 208 series of corresponding intervals indications to collect additional specific information to reduce the input imprecision to an acceptable level limit
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《质量管理与可靠性》课程教学资源(PPT课件)第2章 统计过程控制理论(SPC).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第1章 质量管理概论 Quality Management and Reliability(主讲:路春光、孟丽丽).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第6章 质量检验及抽样技术.pptx
- 《质量管理与可靠性》课程教学资源(PPT课件)第3章 统计质量控制方法.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第5章 设计质量管理.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第7章 ISO9000族标准与质量体系.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第8章 可靠性工程基础.ppt
- 《质量管理与可靠性》课程授课教案(讲稿)第二讲 全面质量管理概论(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第四讲 6σ管理原理及应用.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第一讲 全面质量管理概论(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第三讲 ISO9000族标准及质量认证.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第七讲 设计质量控制原理及应用(1/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第五讲 质量管理统计技术与方法(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第八讲 设计质量控制原理及应用(2/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第六讲 质量管理统计技术与方法(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十四讲 过程质量控制原理及应用(4/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十一讲 过程质量控制原理及应用(1/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十讲 设计质量控制原理及应用(4/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第九讲 设计质量控制原理及应用(3/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十五讲 抽样检验原理及应用.doc
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L13_14_Comparative studies with respect to probability theory.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L15_16_Engineering analyses with intervals and fuzzy sets, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L17_18_Engineering analyses with imprecise probabilities, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L19_20_Efficient Uncertainty Quantification for Complex Systems Analysis.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L1_2_Intro.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L3_4_What is what - intervals, fuzzy sets, random variables, imprecise probabilities epistemic uncertainty.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L7_8_Processing of fuzzy sets – from theory to numerical procedures.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L9_10_Quantification of heterogeneous information.pdf
- 《系统工程理论与方法》课程教学大纲 System Engineering.pdf
- 《系统工程理论与方法》课程教学资源(案例)传统工艺品企业的组织结构系统分析.pdf
- 《系统工程理论与方法》课程教学资源(案例)得利斯集团的学习型企业建设.pdf
- 《系统工程理论与方法》课程教学资源(案例)层次分析法在水环境系统工程中的应用.pdf
- 《系统工程理论与方法》课程教学资源(案例)基于案例推理的供应商选择决策支持系统研究.pdf
- 《系统工程理论与方法》课程教学资源(案例)某网上书店的系统规划.pdf
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 1 系统与建设系统概述.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 2 系统工程及方法论.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 3 系统分析.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 6 系统评价.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 8 系统工程方法在建设管理中的应用.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 7 系统决策.pptx