《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L13_14_Comparative studies with respect to probability theory

Comparativestudies withrespecttoprobabilitytheory
Michael Beer 1 / 14 Comparative studies with respect to probability theory

VagueInformation:ComparativeStudyPROBABILITIESORINTERVALSOR???Simplesettlementproblem(Ang&Tang1984)StructureNmodel correction factorCccompressionindex(clay)Sande.soil initial void ratioHclaylayerthicknessP。initial stress in clayNormallyHConsolidatedApstressincreasebystructureClayP, + ApC.H文8=NlogP°1+e.RockStatistical data?Experience?Distribution type?Data quality?Physical justification?Samplesize?Bounds?Assumptions?2/14MichaelBeer
Michael Beer 2 / 14 PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study Simple settlement problem (Ang & Tang 1984) Sand Normally Consolidated Clay Structure Rock H N model correction factor Cc compression index (clay) eo soil initial void ratio H clay layer thickness Po initial stress in clay ∆p stress increase by structure + ∆ δ = + c o 0 o CH P p N 1e P log Statistical data ? Distribution type ? Sample size ? Experience ? Assumptions ? Data quality ? Bounds ? Physical justification ?

Vague Information:Comparative StudyPROBABILITIESORINTERVALSOR???Parameter uncertainty and imprecisionexample(Ang&Tang1984)probabilisticanalysis》performancefunctionExpectedC.O.V.G() = 8. -88.=6.35cmvalueμ1N0.1》MonteCarlo simulation,N=106Cc0.40.251.20.15eoμG= 3.7954270.05H(cm)0=0.8220.05P。(kPa)17814*00.2g(.)△p(kPa)*modifiedP, = P(G() ≤0) = 8.94 ·10-4normal distributionsComparative studyintervalsforallparametersintervalanalysisintervalsforsomeparametersimpreciseprobabilitiesMichael Beer3/14
Michael Beer 3 / 14 Parameter uncertainty and imprecision Expected value µ c.o.v. N 1 0.1 Cc 0.4 0.25 eo 1.2 0.15 H(cm) 427 0.05 Po(kPa) 178 0.05 ∆p(kPa) 14* 0.2 Comparative study normal distributions *modified • example (Ang & Tang 1984) • probabilistic analysis 0 g(.) ( ) =δ −δ G c . δ = c 6 35 cm . » performance function » Monte Carlo simulation, N = 106 ( ( ) ) − = ≤= ⋅ 4 P P G 0 8 94 10 f . . µ = σ = G 2 G 3 795 0 822 . . • intervals for all parameters interval analysis • intervals for some parameters imprecise probabilities PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study

Vague Information:Comparative StudyPROBABILITIESORINTERVALSOR???Parameter intervals.[Xi,Xu]=[ux-30x-μx +30xintervalforperformance function:[g,g.].no probabilistic modelPropagation ofparameterintervals·intuitive suggestion: use of uniform distributions over[xu,xuand Mcs》histogramartificial》only extremevalues usefulN=106-6.236.22][g,gu Mcs二》lowapproximationqualityof boundsexact solution:[g,g,]=[-9.66,6.24]-6.23*6.22* g(.)*average of 500 analyses》high numericalcostinterval analysis methods:global optimization9.66,6.24》highapproximationquality:[g,,guo》numericallyefficient:N=165MichaelBeer4/14
Michael Beer 4 / 14 Parameter intervals =µ −σ µ +σ i ii i xx 3 3 il iu X X X X , , Propagation of parameter intervals • no probabilistic model • interval for performance function: g gl u , • intuitive suggestion: use of uniform distributions over and MCS x x il iu , N = 106 −6.23* 6.22* g(.) * average of 500 analyses • interval analysis methods: global optimization » histogram artificial » only extreme values useful » low approximation quality of bounds, exact solution: = − l u MCS g g 6 23 6 22 , . ,. = − g g 9 66 6 24 l u , . ,. » high numerical cost » high approximation quality: = − l u GO g g 9 66 6 24 , . ,. » numerically efficient: N = 165 PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study

VagueInformation:ComparativeStudyPROBABILITIESORINTERVALSOR???Interval analysisProbabilisticanalysis·[g,9,]=[-9.66,6.24]-[-9.66,0] (0,6.24]· P, = P(G()≤0) = 8.94 10-4Given thatinput information isquitevaguefailuremay occur in afailure mayoccurmoderate number of casescomparablemagnitude of exceedancesignificant exceedance of.g =0of g=0rather small,strongmayoccurexceedance quite unlikelyconclusionsfocussedon differentissuesGeneralrelationshipbounding property P(Y [yu,yu) ≥P(Xe[x,xu) for general mapping X-Y》knowndistributionofX》unknowndistributionofXconclusions fromprobabilistic results maybetoointervalanalysismostlyoptimistic,worstcase(whichistooconservativeemphasizedinintervalanalysis)maybe likelyMichaelBeer5/14
Michael Beer 5 / 14 Probabilistic analysis • failure may occur in a moderate number of cases Interval analysis • =− =− ∪ ( g g 9 66 6 24 9 66 0 0 6 24 l u , . ,. . , ,. failure may occur magnitude of exceedance of g = 0 rather small, strong exceedance quite unlikely significant exceedance of g = 0 may occur comparable conclusions focussed on different issues Given that input information is quite vague » known distribution of X General relationship • bounding property for general mapping X PY y y PX x x ( ∈ ≥∈ l u , , ) ( l u ) →Y conclusions from interval analysis mostly too conservative ( ( ) ) − = ≤= ⋅ 4 P P G 0 8 94 10 f . . » unknown distribution of X probabilistic results may be too optimistic, worst case (which is emphasized in interval analysis) maybe likely PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study

Vague Information:Comparative StudyPROBABILITIESORINTERVALSOR???ProbabilisticanalysisIntervalanalysisnormaldistributionsforall X[xuxu]=[μx -30xμx +30x for all X(initialexampledescription)P(X, [xu,u],i= 1,.,6) = 0.98391→[9,9]=-9.66,6.24histogram for G(.)P(G(-) =[g),g.) ≥0.98391P(G() =[g,9,) =0.999931》estimation of intervals [gip,gup]largedifferenceduetolow0.98391With P(G() [gip,gup)probabilitydensityforsmallg(),=but critical forfailurefromhistogram- both-sided[1.15,5.53[gip, gup Jentral.left-sided w.r.t.lowerbound g0-1010 g(.)-9.66,5.39[g, 9up eft =moderate differenceintervalresultisconservativedue to high probabilitydifferences controlled by distributionof G(.)densityatupperboundsMichael Beer6/14
Michael Beer 6 / 14 Probabilistic analysis • Interval analysis • P X x x i 1 6 0 98391 ( i il iu ∈ == , , ,., . ) normal distributions for all Xi (initial example description) =µ −σ µ +σ i ii i xx 3 3 il iu X X X X , , for all Xi P G . g g 0 98391 ( ( ) ∈ ≥ l u , . ) histogram for G(.) P G . g g 0 99993 ( ( ) ∈ = l u , . ) » estimation of intervals [glP,guP] with from histogram P G . g g 0 98391 ( ( ) ∈ = lP uP , . ) differences controlled by distribution of G(.) interval result is conservative −10 0 10 g(.) = − g g 9 66 6 24 l u , . ,. ▪ both-sided = lP uP central g g 1 15 5 53 , . ,. ▪ left-sided w.r.t. lower bound gl = − l uP left g g 9 66 5 39 , . ,. large difference due to low probability density for small g(.), but critical for failure moderate difference due to high probability density at upper bounds PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study

Vague Information:Comparative StudyPROBABILITIESORINTERVALSOR???Interval analysisProbabilistic approximation[g,9]-[-9.66,6.24].usingestimatedmomentsofG(.)Hg=3.795,=0.822P(G()=[g,g.)≥0.98391》Chebyshev'sinequalitywith0.98391P(G() [9ip, 9up he[9ip, 9up heby[-3.35,10.940-1010 g(.)interval analysisintervalresultshiftedtowardsfailure domain,even moreChebyshevconservativethanChebyshevrecall histogram for G(.)interval result reflectstendencyfor uniform Xof thedistribution of G(.)to left-skewnessfor right-skewed distribution of G()Chebychev'sinequalitymayleadtothemoreconservativeresult-1010 g(.)Michael Beer7/14
Michael Beer 7 / 14 Probabilistic approximation • Interval analysis using estimated moments of G(.) • P G . g g 0 98391 ( ( ) ∈ ≥ l u , . ) = − g g 9 66 6 24 l u , . ,. µ= σ= 2 G G 3 795 0 822 ., . P G . g g 0 98391 ( ( ) ∈ > lP uP , . Cheby ) » Chebyshev’s inequality with = − lP uP Cheby g g 3 35 10 94 , .,. interval result shifted towards failure domain, even more conservative than Chebyshev interval result reflects tendency of the distribution of G(.) to left-skewness −10 0 10 g(.) interval analysis Chebyshev for right-skewed distribution of G(.), Chebychev‘s inequality may lead to the more conservative result −10 10 g(.) recall histogram for G(.) for uniform Xi PROBABILITIES OR INTERVALS OR ??? Vague Information: Comparative Study

VagueInformation:ComparativeStudyINTERVALORMOMENTS?Generalremarksinterval analysis headsforthe extremeevents,whilsta probabilisticanalysisyields probabilitiesforevents.for a defined confidence level P(X, [xu,xuD, interval analysis is moreconservative and independent of distributions of the XconservatismofintervalanalysisiscomparabletoChebyshev'sinequality.differencebetweeninterval resultsandprobabilisticresultsiscontrolledbythe distribution of theresponseforadefinedconfidencelevel,interval boundsmaybeeasiertospecifyorto control than momentsintervalanalysis can behelpful》toidentifylow-probability-but-high-consequenceeventsforriskanalysis》incaseof sensitivityof P,w.r.t.distributionassumption andveryvagueinformationforthisassumption》 ifthefirst 2 moments cannot be identified withsufficient confidenceWhat to chose in"intermediate"cases?MichaelBeer8/14
Michael Beer 8 / 14 INTERVAL OR MOMENTS ? General remarks • interval analysis heads for the extreme events, whilst a probabilistic analysis yields probabilities for events » to identify low-probability-but-high-consequence events for risk analysis • for a defined confidence level , interval analysis is more conservative and independent of distributions of the Xi PX x x ( i il iu ∈ , ) • difference between interval results and probabilistic results is controlled by the distribution of the response • conservatism of interval analysis is comparable to Chebyshev‘s inequality interval analysis can be helpful » in case of sensitivity of Pf w.r.t. distribution assumption and very vague information for this assumption » if the first 2 moments cannot be identified with sufficient confidence • for a defined confidence level, interval bounds maybe easier to specify or to control than moments What to chose in “intermediate” cases ? Vague Information: Comparative Study

Vague Information:Comparative StudyINTERVALORMOMENTS?Idea:informationcontentcompare interval representation andmoment representationof uncertainty by means of information content:Whichrepresentation tells usmore?assumethat a variable X is represented alternatively(i)bythefirst two moments μxand ox?(ii) by an interval [xi, xu] for a given confidence P(X e [x,xu])applymaximumentropyprincipletobothrepresentations;calculate the least information of the representationwithoutmakinganyadditionalassumptionschose the more informative representation;exploitavailableinformationtomaximumextent(notincontradictionwithmaximumentropyprinciple)Relating intervals and momentsanalog to the concept of confidenceintervals[X,x] =[ux-k.ox/μx+k.ox]Michael Beer9/14
Michael Beer 9 / 14 Idea: information content • compare interval representation and moment representation of uncertainty by means of information content: Which representation tells us more ? PX x x ( ∈ l u , ) • assume that a variable X is represented alternatively (i) by the first two moments μX and σX 2 (ii) by an interval [xl , xu] for a given confidence • apply maximum entropy principle to both representations; calculate the least information of the representation without making any additional assumptions • chose the more informative representation; exploit available information to maximum extent (not in contradiction with maximum entropy principle) • = µ − ⋅σ µ + ⋅σ lu X XX X xx k k , , analog to the concept of confidence intervals Relating intervals and moments INTERVAL OR MOMENTS ? Vague Information: Comparative Study

VagueInformation:ComparativeStudyENTROPY-BASEDCOMPARISONShannon's entropycontinuous entropy(f) =-Jf(x) · log2 (f(x)dx》modification for comparison (ease of derivation)In(f (x)log, (f (x)S(f) = -[f(x) · In(f(×)dxS.(f)In(2)In(2)Intervalrepresentationmaximumentropyprinciple1uniformdistributionf(xX. - X,7dx= In(×u-x,)InXrelating to momentsXu-x, =2k0xnint = In(2.k ·ox) = In(ox) +In(2.k)7m.inMichael Beer10/14
Michael Beer 10 / 14 ENTROPY-BASED COMPARISON Shannon‘s entropy • continuous entropy S f f x f x dx ( ) =− ⋅ ∫ ( ) log2 ( ( )) Interval representation • maximum entropy principle =− ⋅ ∫ − − u l x m int x ul ul 1 1 S dx xx xx , ln ( ( )) ( ( )) ( ) = 2 f x f x 2 ln log ln » modification for comparison (ease of derivation) ( ) ( ) m = ⋅ =− ⋅ ( ) ∫ ( ) ( ( )) 1 S f S f f x f x dx 2 ln ln uniform distribution ( ) = − u l 1 f x x x S 2k m int , = ⋅ ⋅σ = σ + ⋅ ln( X ) ln ln ( X ) (2 k) • relating to moments = − ln(x x u l) x x 2k u l − = ⋅ ⋅σX Vague Information: Comparative Study
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L11_12_FUZZY STOCHASTIC ANALYSIS.pdf
- 《质量管理与可靠性》课程教学资源(PPT课件)第2章 统计过程控制理论(SPC).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第1章 质量管理概论 Quality Management and Reliability(主讲:路春光、孟丽丽).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第6章 质量检验及抽样技术.pptx
- 《质量管理与可靠性》课程教学资源(PPT课件)第3章 统计质量控制方法.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第5章 设计质量管理.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第7章 ISO9000族标准与质量体系.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第8章 可靠性工程基础.ppt
- 《质量管理与可靠性》课程授课教案(讲稿)第二讲 全面质量管理概论(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第四讲 6σ管理原理及应用.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第一讲 全面质量管理概论(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第三讲 ISO9000族标准及质量认证.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第七讲 设计质量控制原理及应用(1/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第五讲 质量管理统计技术与方法(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第八讲 设计质量控制原理及应用(2/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第六讲 质量管理统计技术与方法(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十四讲 过程质量控制原理及应用(4/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十一讲 过程质量控制原理及应用(1/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十讲 设计质量控制原理及应用(4/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第九讲 设计质量控制原理及应用(3/4).doc
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L15_16_Engineering analyses with intervals and fuzzy sets, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L17_18_Engineering analyses with imprecise probabilities, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L19_20_Efficient Uncertainty Quantification for Complex Systems Analysis.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L1_2_Intro.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L3_4_What is what - intervals, fuzzy sets, random variables, imprecise probabilities epistemic uncertainty.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L7_8_Processing of fuzzy sets – from theory to numerical procedures.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L9_10_Quantification of heterogeneous information.pdf
- 《系统工程理论与方法》课程教学大纲 System Engineering.pdf
- 《系统工程理论与方法》课程教学资源(案例)传统工艺品企业的组织结构系统分析.pdf
- 《系统工程理论与方法》课程教学资源(案例)得利斯集团的学习型企业建设.pdf
- 《系统工程理论与方法》课程教学资源(案例)层次分析法在水环境系统工程中的应用.pdf
- 《系统工程理论与方法》课程教学资源(案例)基于案例推理的供应商选择决策支持系统研究.pdf
- 《系统工程理论与方法》课程教学资源(案例)某网上书店的系统规划.pdf
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 1 系统与建设系统概述.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 2 系统工程及方法论.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 3 系统分析.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 6 系统评价.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 8 系统工程方法在建设管理中的应用.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 7 系统决策.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 5 实用模型技术.pptx
