《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L19_20_Efficient Uncertainty Quantification for Complex Systems Analysis

EfficientUncertaintyQuantificationforComplexSystemsAnalysisMichaelBeerInstituteforRisk and Reliability,Leibniz UniversityHannover,GermanyInstituteforRiskandUncertainty,UniversityofLiverpool,UKInternational JointResearchCenterforEngineeringReliability andStochasticMechanics(ERSM),TongjiUniversity,China
Michael Beer 1 / 24 Efficient Uncertainty Quantification for Complex Systems Analysis Michael Beer Institute for Risk and Reliability, Leibniz University Hannover, Germany Institute for Risk and Uncertainty, University of Liverpool, UK International Joint Research Center for Engineering Reliability and Stochastic Mechanics (ERSM), Tongji University, China

ReliabilityAssessmentofComplexSystemsinUncertainEnvironmentsCOMPLEXNETWORKEDSYSTEMSDependenceoncomplexnetworksconstantlygrows.increasing demand for modern networks to be highly reliablequantifythedegreeto whichanetworkisabletoprovide itsserviceunderstandnetworkbehaviorforreliableandefficientpredictionspower western USfinancial globalgas distribution EuropeGrand challengesmodelinterdependencebetweendifferentnetworksefficient simulation tools and uncertainty quantification methodsdynamicnatureof real-worldnetworksprocessesonnetworks(e.g.epidemics,cascadingfailures)MichaelBeer2/24
Michael Beer 2 / 24 COMPLEX NETWORKED SYSTEMS Dependence on complex networks constantly grows quantify the degree to which a network is able to provide its service understand network behavior for reliable and efficient predictions increasing demand for modern networks to be highly reliable dynamic nature of real-world networks model interdependence between different networks efficient simulation tools and uncertainty quantification methods processes on networks (e.g. epidemics, cascading failures) Reliability Assessment of Complex Systems in Uncertain Environments • • • Grand challenges gas distribution Europe power western US financial global

ReliabilityAssessmentofComplexSystemsinUncertainEnvironmentsENGINEEREDSYSTEMS:SPECIFICCHALLENGESRapidgrowthinscale,complexityandinterconnectionuncertaintiesandrisksappearto agreaterextentthan everbeforeincreasingvulnerabilityandlackof resilience;seeFukushima,financial crisis,cybercrime,...low-probability-high-conseguenceeventsvery difficulttoidentifybuthighlycritical;dramaticconsequencesthroughcascadingfailuresissuesspanacrossdisciplinesApproachesofUncertaintyQuantificationAdvancedMonte CarloGeneralizedmodelsStochasticModelingSimulationmethodsforvagueand impreciseinformation, x(h,) d(o)X(t,w)4μ(x) 41.0eiSe]/htXeX=MichaelBeer3/24
Michael Beer 3 / 24 Rapid growth in scale, complexity and interconnection uncertainties and risks appear to a greater extent than ever before low-probability-high-consequence events very difficult to identify but highly critical; dramatic consequences through cascading failures increasing vulnerability and lack of resilience; see Fukushima, financial crisis, cyber crime, . issues span across disciplines ENGINEERED SYSTEMS: SPECIFIC CHALLENGES Approaches of Uncertainty Quantification Advanced Stochastic Modeling Monte Carlo Simulation methods Generalized models for vague and imprecise information Reliability Assessment of Complex Systems in Uncertain Environments

EfficientSystemsReliabilityAnalysisANALYSISOECOMPLEXSYSTEMSReliability,optimalmaintenanceandrepairmphatiguetestinMalorusChargvettonBanen2900DriveBeltbernanea.cmmo.comGasuneollTrteparatioMichael Beer4/24
Michael Beer 4 / 24 Reliability, optimal maintenance and repair ANALYSIS OF COMPLEX SYSTEMS Efficient Systems Reliability Analysis

EfficientSystemsReliabilityAnalysisANALYSISOECOMPLEXSYSTEMSModelingfor efficient and realisticreliability analysistraditionalapproachesTopevent》faulttreeanalysis》reliabilityblockdiagrams>》limitations in modeling》dependencies》common-causefailures》time-dependentbehavior》lackofinformation》complexnetworkstructurealternativemodelingtoaddresslimitationsimprovedreliabilityandavailabilityanalysisof systems》identifyweakcomponents》defineoptimalmaintenance strategiesMichaelBeer5/24
Michael Beer 5 / 24 ANALYSIS OF COMPLEX SYSTEMS Modeling for efficient and realistic reliability analysis Efficient Systems Reliability Analysis • traditional approaches » fault tree analysis alternative modeling to address limitations » reliability block diagrams » . limitations in modeling » dependencies » common-cause failures » time-dependent behavior » lack of information » complex network structure improved reliability and availability analysis of systems » identify weak components » define optimal maintenance strategies

EfficientSvstemsReliabilityAnalysisANALYSISOFCOMPLEXSYSTEMSSurvival signaturesystems availability interms of numberof working components》statevectorX = (X1..,Xm)Xi=1:componentiis workingX,=O:componentiisNoTworking》structurefunction((≤) = (X1*,X)p(x)=1 : system is workingp(×)=O : system is NOTworking》exampleβ(×1 =1,X2 = 0,× = 0)= ((1,0,0)= 0((× = 1, ×, = 1,×, = 0) = (P(1,1,0) = 1Michael Beer6/24
Michael Beer 6 / 24 ANALYSIS OF COMPLEX SYSTEMS Survival signature Efficient Systems Reliability Analysis • systems availability in terms of number of working components » state vector xx x = ( 1 m ,., ) xi = 1: component i is working xi = 0: component i is NOT working » structure function ϕ =ϕ (x xx ) ( 1 m ,., ) : system is working : system is NOT working ϕ = (x 1 ) ϕ = (x 0 ) » example ϕ = = = =ϕ = (x 1x 0x 0 100 0 12 3 , , ) ( , , ) ϕ = = = =ϕ = (x 1x 1x 0 110 1 123 , , ) ( , , )

EfficientSystemsReliabilityAnalysisANALYSISOFCOMPLEXSYSTEMSSurvival signaturecompressed representationof systemavailability》systemwithmcomponentsof the sametype》Ioutof mcomponentsareworkingD(Z(α)Φ(0) = 0, @(m) = 1XESprobability that system works whenI out of m components are working》examplem=3, 1=2:S, = ((1,1,0),(1,0,1), (0,1,1)(β(1,1,0) = 1, (1,0,1) = 1, β(0,1,1) = 0(区)=号(1+1+0)=号D(2and further: @(0) = 0, Φ(1) = 0, Φ(3) = 1MichaelBeer7/24
Michael Beer 7 / 24 ANALYSIS OF COMPLEX SYSTEMS Survival signature Efficient Systems Reliability Analysis • compressed representation of system availability ( ) ( ) − ∈ Φ= ⋅ϕ ∑ l 1 x S m l x l » system with m components of the same type » l out of m components are working Φ= Φ = (0 0 m 1 ) , ( ) » example ϕ =ϕ =ϕ = (110 1 101 1 011 0 , , , , , , ) ( ) ( ) m = 3, l = 2: S 110 101 011 l = {( , , , , , , ) ( ) ( )} ( ) ( ) ( ) − ∈ Φ = ⋅ ϕ = ⋅ ++ = ∑ l 1 x S 3 1 2 2 x 110 2 3 3 and further: Φ=Φ=Φ= (0 0 1 0 3 1 ) , , ( ) ( ) probability that system works when l out of m components are working

EfficientSystemsReliabilityAnalysisANALYSISOFCOMPLEXSYSTEMSSurvivalsignatureexpansiontosystemswithseveraltypesofcomponents》systemwithKcomponenttypes,mkcomponentsoftypek(k=1,,K)》lkoutofmkcomponentsareworking (k=1,..,K)0(...)=PxN》exampleK = 2, m1 = 3, m2 = 3:Φ(1,2Zp(μ)12XeS1①+(0+0 +0) +(0+0+0) =3329(μ)=1:1 (1+1+0)=号D(2,33U8/24MichaelBeer
Michael Beer 8 / 24 ANALYSIS OF COMPLEX SYSTEMS Survival signature Efficient Systems Reliability Analysis • expansion to systems with several types of components » system with K component types, mk components of type k (k=1, ., K) » lk out of mk components are working (k=1, ., K) » example K = 2, m1 = 3, m2 = 3: ( ) ( ) − = ∈ Φ = ⋅ϕ ∏ ∑ l l 1 k 1 K k 1 k k 1 x S k m l l x l ,., ,., ( ) ( ) ( ) − − ∈ Φ = ⋅ ⋅ ϕ = ⋅⋅ ++ = ∑ l 1 1 x S 3 3 1 1 2 2 3 x 1 1 0 2 3 3 1 3 , ( ) ( ) (( ) ( ) ( )) − − ∈ Φ = ⋅ ⋅ϕ ∑ = ⋅⋅ ++ + ++ + ++ = l 1 1 x S 3 3 1 2 x 1 2 1 1 1 001 000 000 3 3 9

EfficientSvstemsReliabilityAnalvsisANALYSISOECOMPLEXSYSTEMSSurvival functiontimedependentsystem reliabilityCk=numberof componentsof typekstill workingattimetproductforindependentP(T. )=()(6(C-)failureofcomponentssystem structureprobability structureefficientsimulationontheseparatedprobabilitystructuresuperiorfeatures》applicabletocomplexsystemstructures》canworkwitharbitrary dependencystructures betweenfailureevents》captureschangingofcomponenttypes(e.g.,duetorepair)》canoperatewithimpreciseprobabilities(capturesdependabilityissuesMichael Beer9/24
Michael Beer 9 / 24 system structure probability structure ( ) ( ) ( { }) = = = >= Φ ⋅ = ∑ ∑ 1 k 1 k m m K k S 1 k t k l0 l0 k 1 PT t . ,., l l P C l • time dependent system reliability = number of components of type k still working at time t k Ct efficient simulation on the separated probability structure ANALYSIS OF COMPLEX SYSTEMS Survival function Efficient Systems Reliability Analysis product for independent failure of components • superior features » applicable to complex system structures » can work with arbitrary dependency structures between failure events » captures changing of component types (e.g., due to repair) » can operate with imprecise probabilities (captures dependability issues)

EfficientSystemsReliabilityAnalysisANALYSISOFCOMPLEXSYSTEMSImprecise lifetimedistributionsforcomponentsboundsonsurvivalfunction》stochasticindependencebetween components[E (t)]*[1 - Ek (t)]P(T, >t) = ...(I.l)n0[Ft)-2...2o(..)Assessment of the influence of individual componentstimedependentrelativeimportanceindex(RI)RI (t) =P(T, >tT, >t)-P(T, >t/T, ≤t)Effectoffailureof componentionsystemreliabilitytargeted maintenance or repairof critical componentsatanypointintimeMichael Beer10/24
Michael Beer 10 / 24 Imprecise lifetime distributions for components • bounds on survival function » stochastic independence between components Assessment of the influence of individual components ( ) ( ) ( ) ( ) − = = = >= Φ ⋅ ∑ ∑ ∏ − 1 k k k k 1 k m m K m l l k S 1 k k k l0 l0 k 1 k m PT t l l Ft 1Ft l . ,., ( ) ( ) ( ) ( ) − = = = >= Φ ⋅ ∑ ∑ ∏ − 1 k k k k 1 k m m K m l l k k k S 1 k l0 l0 k 1 k m PT t l l Ft 1Ft l . ,., • time dependent relative importance index (RI) RI t P T t T t P T t T t i Si Si ( ) = > >− > ≤ ( ) ( ) Effect of failure of component i on system reliability targeted maintenance or repair of critical components at any point in time ANALYSIS OF COMPLEX SYSTEMS Efficient Systems Reliability Analysis
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L17_18_Engineering analyses with imprecise probabilities, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L15_16_Engineering analyses with intervals and fuzzy sets, applications.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L13_14_Comparative studies with respect to probability theory.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L11_12_FUZZY STOCHASTIC ANALYSIS.pdf
- 《质量管理与可靠性》课程教学资源(PPT课件)第2章 统计过程控制理论(SPC).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第1章 质量管理概论 Quality Management and Reliability(主讲:路春光、孟丽丽).ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第6章 质量检验及抽样技术.pptx
- 《质量管理与可靠性》课程教学资源(PPT课件)第3章 统计质量控制方法.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第5章 设计质量管理.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第7章 ISO9000族标准与质量体系.ppt
- 《质量管理与可靠性》课程教学资源(PPT课件)第8章 可靠性工程基础.ppt
- 《质量管理与可靠性》课程授课教案(讲稿)第二讲 全面质量管理概论(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第四讲 6σ管理原理及应用.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第一讲 全面质量管理概论(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第三讲 ISO9000族标准及质量认证.doc
- 《质量管理与可靠性》课程授课教案(讲稿)第七讲 设计质量控制原理及应用(1/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第五讲 质量管理统计技术与方法(1/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第八讲 设计质量控制原理及应用(2/4).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第六讲 质量管理统计技术与方法(2/2).doc
- 《质量管理与可靠性》课程授课教案(讲稿)第十四讲 过程质量控制原理及应用(4/4).doc
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L1_2_Intro.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L3_4_What is what - intervals, fuzzy sets, random variables, imprecise probabilities epistemic uncertainty.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L7_8_Processing of fuzzy sets – from theory to numerical procedures.pdf
- 《工程分析的模糊集和非精确概率方法》课程教学课件(讲稿)L9_10_Quantification of heterogeneous information.pdf
- 《系统工程理论与方法》课程教学大纲 System Engineering.pdf
- 《系统工程理论与方法》课程教学资源(案例)传统工艺品企业的组织结构系统分析.pdf
- 《系统工程理论与方法》课程教学资源(案例)得利斯集团的学习型企业建设.pdf
- 《系统工程理论与方法》课程教学资源(案例)层次分析法在水环境系统工程中的应用.pdf
- 《系统工程理论与方法》课程教学资源(案例)基于案例推理的供应商选择决策支持系统研究.pdf
- 《系统工程理论与方法》课程教学资源(案例)某网上书店的系统规划.pdf
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 1 系统与建设系统概述.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 2 系统工程及方法论.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 3 系统分析.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 6 系统评价.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 8 系统工程方法在建设管理中的应用.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 7 系统决策.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 5 实用模型技术.pptx
- 《系统工程理论与方法》课程教学资源(PPT课件)Charpter 4 系统模型.pptx
- 武汉理工大学:《系统工程》课程教学课件(讲稿)Chapter 07 系统预测与决策.pdf
- 武汉理工大学:《系统工程》课程教学课件(讲稿)Chapter 05 切克兰德方法论.pdf