《图论及其应用》课程教学课件(PPT讲稿)第五章 匹配与因子分解 5-3 匈牙利算法与最优匹配算法

本次课主要内容 匈牙利算法与最优匹配算法 (一)、匈牙利算法 (二)、最优匹配算法
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 1 本次课主要内容 (一)、匈牙利算法 (二)、最优匹配算法 匈牙利算法与最优匹配算法

(一)、匈牙利算法 1、偶图中寻找完美匹配 (1)、问题 设G=(X,Y),X=Y,在G中求一完美匹配M. (2)、基本思想 从任一初始匹配M,出发,通过寻求一条M,可扩路P,令 M=M△EP),得到比M更大的匹配M1(近似于迭代思想)。 (3)、M可扩扩路的寻找方法 1965年,Edmonds首先提出:用扎根于M非饱和点u的M 交错树的生长来求M可扩路
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 2 (一)、匈牙利算法 1、偶图中寻找完美匹配 (1) 、问题 设G=(X, Y), |X|=|Y|, 在G中求一完美匹配M. (2) 、基本思想 从任一初始匹配M0出发,通过寻求一条M0可扩路P,令 M1=M0ΔE(P), 得到比M0更大的匹配M1 (近似于迭代思想)。 (3) 、M可扩扩路的寻找方法 1965年,Edmonds首先提出: 用扎根于M非饱和点u的M 交错树的生长来求M可扩路

定义1设G=(X,Y,M是G的匹配,u是M非饱和点。称 树H是G的扎根于点u的M交错树,如果: 1)u∈V山;2)对任意v∈V山,(m,v)路是M交错路。 G=(X,Y) 扎根x3的M交错树 扎根于M非饱和点u的M交错树的生长讨论:
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 3 定义1 设G=(X, Y), M是G的匹配,u是M非饱和点。称 树H是G的扎根于点u的M交错树,如果: 1) u ∈V(H); 2) 对任意v ∈V(H), (u, v)路是M交错路。 x1 x2 x3 x4 y1 y2 y3 y4 G=(X, Y) x3 x x2 4 y4 y3 y2 扎根 x3 的M交错树 扎根于M非饱和点u的M交错树的生长讨论:

假如扎根于M非饱和点u的M交错树为H。它有两种情形: 情形1除点ù外,H中所有点为M饱和点,且在M上配对; 扎根u的M交错树H 扎根u的M交错树H 情形2H包含除u外的M非饱和点。 对于情形1,令S=VH∩X,T=VH∩Y,显然: TN(S) 1)若N(S)=T,由于S-{u}中点与T中点配对,所以有: T=S-1,于是有:NS=S-1<Sl.由Hall定理,G中不存 在完美匹配;
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 4 假如扎根于M非饱和点u的M交错树为H。它有两种情形: 情形1 除点u外,H中所有点为M饱和点,且在M上配对; x4 u x2 y4 y3 y2 扎根 u的M交错树H x5 情形2 H包含除u外的M非饱和点。 x4 u x2 y4 y3 y2 扎根 u的M交错树H 对于情形1,令S=V(H)∩X, T=V(H)∩Y,显然: T N S ( ) 1) 若N(S)=T, 由于S - {u}中点与T中点配对,所以有: |T|=|S|-1, 于是有: |N(S)| = |S|-1< |S|.由Hall定理,G中不存 在完美匹配;

2)若 TCN(S) 令y∈N(S)-T,则在树H中存在点x与y邻接。因为H的所有 点,除u外,均在M下配对。所以,或者x=u,或者x与H的某 一顶点配对,但无论哪种情况,都有y廷M 扎根u的M交错树H 扎根u的M交错树H 当然,y可能为M饱和点,也可能为M非饱和点
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 5 2) 若 T N S ( ) 令y ∈N(S) – T, 则在树H中存在点x与y邻接。因为H的所有 点,除u外,均在M下配对。所以,或者x=u,或者x与H的某 一顶点配对,但无论哪种情况,都有 xy M x u x2 y4 y3 y2 扎根 u的M交错树H x5 y x u x2 y4 y3 y2 扎根 u的M交错树H x5 y 当然,y可能为M饱和点,也可能为M非饱和点

若y为M饱和点,可设yz∈M,则加上顶点y及z和边xy与yz 生长H,得到情形1; 扎根u的M交错树H 若y为M非饱和点,加上顶点y和边xy生长H,得到情形2 扎根u的M交错树H
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 6 若y为M饱和点,可设yz ∈M,则加上顶点y及z和边xy与yz 生长H,得到情形1; x u x2 y4 y3 y2 扎根 u的M交错树H x5 y z 若y为M非饱和点,加上顶点y和边xy生长H,得到情形2. x u x2 y4 y3 y2 扎根 u的M交错树H x5 y

后一情况下找到一条M可扩路,可以对匹配进行一次修改, 过程的反复进行,最终判定G是否有完美匹配或者求出完美 匹配。 根据上面讨论,可以设计求偶图的完美匹配算法。 (4)、偶图完美匹配算法一匈牙利算法。 设M是初始匹配。H是扎根于M非饱和点u的交错树。 令:S=VH∩X,T=VHD∩Y。 (a)、若M饱和X所有顶点,停止。否则,设u为X中M 非饱和顶点,置S={u},T=Φ; (b)、若N(S)=T,则G中不存在完美匹配。否则设y∈N(S)-T. (c)若y为M饱和点,且yz∈M,置S-=SU{z},T-TU(y), 转(b)。否则,设P为M可扩路,置M=M△EP),转(
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 7 后一情况下找到一条M可扩路,可以对匹配进行一次修改, 过程的反复进行,最终判定G是否有完美匹配或者求出完美 匹配。 根据上面讨论,可以设计求偶图的完美匹配算法。 (4) 、偶图完美匹配算法——匈牙利算法。 设M是初始匹配。H是扎根于M非饱和点u的交错树。 令:S=V(H)∩X, T=V(H)∩Y。 (a) 、若M饱和X所有顶点,停止。否则,设u为X中M 非饱和顶点,置S={u},T=Φ; (b) 、若N(S)=T, 则G中不存在完美匹配。否则设y ∈N(S) – T. (c ) 若y为M饱和点,且y z ∈M, 置S=S∪{z}, T=T∪{y}, 转(b)。否则,设P为M可扩路,置M1=MΔE(P),转(a)

例1讨论下图G=(X,Y)是否有完美匹配。 G=(X,Y) 解:取初始匹配M={xY2,x23}。 (a)S={x3),T=Φ; G=(X,Y)
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 8 例1 讨论下图G=(X, Y)是否有完美匹配。 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 G=(X, Y) 解:取初始匹配M={x1y2 , x2y3}。 (a) S={x3},T=Φ; x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 G=(X, Y)

(b)N(S)={y2,y3),N(S)≠T,取y2∈N(S)-T G=(X,Y) (c)y2为M非饱和点,加上y2和边x3y2生长树H。此时, 置M=M△EP)=(x1y1,x2y3,X3V2 G=(X,Y)
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 9 (b ) N(S)= {y2 , y3},N(S)≠T, 取y2 ∈N(S)-T (c) y2为M非饱和点,加上y2和边x3y2生长树H。此时, 置M=MΔE(P)={x1y1 , x2y3 , x3y2} x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 G=(X, Y) x3 y2 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 G=(X, Y)

G=X,Y) (a)S={x4},T=Φ; (b)N(S)={y2,y3),N(S)≠T,a取y2∈N(S)-T (c)y2为M饱和点,y2X3∈M。此时,置S=SU{x3} T=TU{y2)。 (b)NS)=(y2,y3)≠T,取y3∈N(S)-T
0.8 1 0.6 0.4 0.2 0 x t 0 0.5 1 1.5 2 −1 −0.5 0 0.5 1 n 10 (a) S={x4},T=Φ; x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 G=(X, Y) (b ) N(S)= {y2 , y3},N(S)≠T, 取y2 ∈N(S)-T (c) y2为M饱和点,y2x3 ∈ M。此时,置S=S∪{x3} T=T∪{y2}。 (b ) N(S)= {y2 , y3} ≠T,取y3 ∈N(S)-T x4 y2 x3
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《图论及其应用》课程教学课件(PPT讲稿)第五章 匹配与因子分解 5-2 图的因子分解.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第五章 匹配与因子分解 5-1 偶图的匹配问题.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第二章 树 2-3 最小生成树.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第二章 树 2-2 生成树.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第二章 树 2-1 树的概念与性质.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第九章 有向图.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第三章 图的连通度 3-3 图的宽与直径.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第三章 图的连通度 3-2 网络的容错参数.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第三章 图的连通度 3-1 割边、割点和块.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第七章 图的着色 7-4 着色的计数与色多项式.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第七章 图的着色 7-3 与色数有关的几类图和完美图.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第七章 图的着色 7-2 图的顶点着色.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第七章 图的着色 7-1 图的边着色.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-6 极图理论简介.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-5 邻接谱与图的邻接代数.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-4 最短路算法、图顿代数表示.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-3 子图、图运算、路与连通性.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-2 图的基本概念.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第一章 图的基本概念 1-1 图论简介.ppt
- 《图论及其应用》课程教学资源 Graph Theory and Its Applications(书籍教材,高等教育出版社:张先迪、李正良).pdf
- 《图论及其应用》课程教学课件(PPT讲稿)第六章 平面图 6-1 平面图的概念与性质.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第六章 平面图 6-2 特殊平面图与平面图的对偶图.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第六章 平面图 6-3 平面图的判定.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第四章 Euler图与Hamilton图 4-1 欧拉图与中国邮路问题.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第四章 Euler图与Hamilton图 4-2 哈密尔顿图.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第四章 Euler图与Hamilton图 4-3 度极大非哈密尔顿图与TSP问题.ppt
- 《图论及其应用》课程教学课件(PPT讲稿)第四章 Euler图与Hamilton图 4-4 超哈密尔顿问题.ppt
- 《高等数学》课程教学资源(课件讲稿)第八章_8-4空间直线.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_8-5空间曲面.ppt
- 《高等数学》课程教学资源(课件讲稿)第八章_8-6空间曲线.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_D8习题课.ppt
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_1基本概念.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_2偏导数.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_3全微分.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_4复合求导.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_5隐函数的求导公式.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_6几何中的应用.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_7方向导数与梯度.pdf
- 《高等数学》课程教学资源(课件讲稿)第九章_D9_8极值与最值.pdf
- 《高等数学》课程教学资源(PPT课件)第八章_8-1向量及其线性运算.ppt