南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary)

版像 NJUAT 南京大学 人工智能学院 SCHODL OF ARTIFICIAL INTELUGENCE,NANJING UNIVERSITY Lecture 6.Prediction with Expert Advice Advanced Optimization(Fall 2023) Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University
Lecture 6. Prediction with Expert Advice Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University Advanced Optimization (Fall 2023)

Outline Problem Setup ·Algorithms Connection to Online Convex Optimization Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 2
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 2 Outline • Problem Setup • Algorithms • Connection to Online Convex Optimization

Motivation Consider that we are making predictions based on external experts. OPPENHEIMER 兹西磁 TITANIC 5 A Chinese Odyssey Part Two- Oppenheimer Titanic Cinderella IMDb 豆 IMDb 豆 IMDb 9.2/10 87% 7.8/10 8.8/10 93% 8.5/10 9.5/10 88% 7.9/10 Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 3
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 3 Motivation • Consider that we are making predictions based on external experts. A Chinese Odyssey Part Two - Cinderella Titanic 9.2/10 87% 7.8/10 8.8/10 93% 8.5/10 9.5/10 88% 7.9/10 Oppenheimer

Prediction with Expert Advice Other examples include Weather report: 的1 的2 3 的4 Stock prediction: 81 82 品3 84 Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 4
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 4 Prediction with Expert Advice • Other examples include 1 2 3 4 ? 1 2 3 4 ? Weather report: Stock prediction:

PEA Problem Setup Question 1 Question 2 Question 3 Advice1 Advice,2 Advice3 Advice2 1 Advice22 Advice23 Experts Advices 1 Advices2 Advices3 Advice,1 Advice2 Advice3 Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 5
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 5 PEA Problem Setup Question 1 Question 2 Question 3 Advice1 1 Advice1 2 Advice1 3 Advice2 1 Advice2 2 Advice2 3 Advice3 1 Advice3 2 Advice3 3 Advice4 1 Advice4 2 Advice4 3 Experts

PEA Problem Setup Question 1 Question 2 Question 3 00行00 ==mm==■m 。----=。== Advice,1 Advice,2 Advice,3 1 1 Advice2 1 Advice22 Advice2 3 Experts Advice,1 Advice32 Advices3 Advice,1 Advice,2 Advice3 Learner Answer 1 Answer 2 Answer 3 Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 6
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 6 PEA Problem Setup Question 1 Question 2 Question 3 Advice1 1 Advice1 2 Advice1 3 Advice2 1 Advice2 2 Advice2 3 Advice3 1 Advice3 2 Advice3 3 Advice4 1 Advice4 2 Advice4 3 Experts Learner Answer 1 Answer 2 Answer 3

PEA:Formulization The online learner(player)aims to make the prediction based by combining N experts'advice. At each round t=1,2,... (1)the player first picks a weight p from a simplex AN; (2)and simultaneously environments pick a loss vector eERN; (3)the player suffers loss fi(p:)(p,e),observes e and updates the model. The feasible domain is the(W-l)-dim simplex△v={p∈Rv|p,≥0,∑1pi=l} We typically assume that0≤lt,i≤1holds for all t∈[T]andi∈[W]. Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 7
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 7 PEA: Formulization • The online learner (player) aims to make the prediction based by combining N experts’ advice

PEA:Formulization The online learner(player)aims to make the prediction based by combining N experts'advice. At each round t=1,2,... (1)the player first picks a weight p from a simplex AN; (2)and simultaneously environments pick a loss vector eERN; (3)the player suffers loss fi(p)(p,e),observes e:and updates the model. The goal is to minimize the regret with respect to the best expert: T T t iE(N] Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 8
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 8 PEA: Formulization • The online learner (player) aims to make the prediction based by combining N experts’ advice. • The goal is to minimize the regret with respect to the best expert:

A Natural Solution Follow the Leader (FTL) Select the expert that performs best so far,specifically, pL=arg min (p,Ln-)=argmin L-1, pE△N ie[N] where L-l∈Nis the cumulative loss vector withL-l,i≌∑ls,i T 61,1=0.49 → 21=1 83,1=0 Regr=∑p,L,)-a∑i t=1 N]1 T 2 =O(T) 61,2=0.51 2,2=0 3,2=1 FTL achieves linear regret in the worst case! Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 9
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 9 A Natural Solution • Follow the Leader (FTL) Select the expert that performs best so far, specifically, FTL achieves linear regret in the worst case!

A Natural Solution Follow the Leader (FTL) Select the expert that performs best so far,specifically, p=arg min (p,L-1)=argmin L-1 pE△N iE[N] whereRN is the cumulative loss vector with. Pitfall:decision is actually a one-hot vector,which can be very unstable. Replacing the 'max'operation in FTL by 'softmax'. Advanced Optimization(Fall 2023) Lecture 6.Prediction with Expert Advice 10
Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice 10 A Natural Solution • Follow the Leader (FTL) Select the expert that performs best so far, specifically, Pitfall: decision is actually a one-hot vector, which can be very unstable. Replacing the ‘max’ operation in FTL by ‘softmax’
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)07 频域滤波器.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)06 图像频域变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)05 代数运算与几何变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)04 图像复原及锐化.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)03 灰度直方图与点运算.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)02 二值图像与像素关系.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)01 概述 Digital Image Processing.pdf
- 人工智能相关文献资料:Adaptivity and Non-stationarity - Problem-dependent Dynamic Regret for Online Convex Optimization.pdf
- 北京大学出版社:21世纪全国应用型本科电子通信系列《MATLAB基础及其应用教程》实用规划教材(共八章,2007,编著:周开利等).pdf
- 《计算机应用基础》课程教学资源(参考资料)Mathematica CheatSheet.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB Reference Sheet, by Giordano Fusco & Jindich Soukup.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf