南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory

Ramsey Theory
Ramsey Theory

"In any party of six people,either at least three ofthem are mutual strangers or at least three ofthem are mutual acquaintances" Color edges of K6 with 2 colors. There must be a monochromatic K3. ON A PROBLEM OF FORMAL LOGIC By F.P.RAMSEY. [Received 28November,1928.-Read 1 December,198. This paper is primarily concerned with a special case of one of the leading problems of mathematical logic,the problem of finding a regular Frank P.Ramsey procedure to determine the truth or falsity of any given logical formula But in the course of this investigation it is necessary to use certain (1903-1930) theorems on combinations which have an independent interest and are most conveniently set out by themselves beforehand
Frank P. Ramsey (1903-1930) “In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances” Color edges of K6 with 2 colors. There must be a monochromatic K3

R(k,l)the smallest integer satisfying: if n=R(k,D),for any 2-coloring of Kn, there exists a red Kk or a blue Ki. 2-coloring of K r:(),(rod.bine) Ramsey Theorem R(k,l)is finite. Frank P.Ramsey (1903-1930) R(3,3)=6
R(k,l) the smallest integer satisfying: Ramsey Theorem R(k,l) is finite. 2-coloring of Kn f : [n] 2 ⇥ {red, blue} if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(3,3) = 6 Frank P. Ramsey (1903-1930)

if n=R(k,D,for any 2-coloring of Kn, there exists a red Kk or a blue Ki. R(k2)=k;R(2,)=I; R(k,)≤R(k,1-1)+R(k-1,)
if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,2) = k ; R(2,l) = l ; R(k,l) ≤ R(k,l-1) + R(k-1,l)

if n=R(k,l),for any 2-coloring of Kn, there exists a red Kk or a blue Ki. R(k,)≤R(k,l-1)+R(k-1,) take n R(k,1-1)+R(k-1,1) arbitrary vertex v IS1+IT+1=n=R(k,-1)+R(k-1,) ≥Rku)knS or Ki1 in S Ki T≥Rk-1,0 orKin+ K Kiin T
S T if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,l) ≤ R(k,l-1) + R(k-1,l) v take n = R(k,l-1) + R(k-1,l) arbitrary vertex v |S| + |T| + 1 = n = R(k,l-1) + R(k-1,l) |S| ≥ R(k,l-1) |T| ≥ R(k-1,l) or or Kk in S Kl-1 in S or Kk-1 in T Kl in T +v Kl +v Kk

if n=R(k,D,for any 2-coloring of Kn, there exists a red Kk or a blue Ki. R(k2)=k;R(2,)=I; R(k,)≤R(k,1-1)+R(k-1,) Ramsey Theorem R(k,l)is finite. By induction: R(k,L)≤ k+1-2 k-1
if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. R(k,2) = k ; R(2,l) = l ; R(k,l) ≤ R(k,l-1) + R(k-1,l) Ramsey Theorem R(k,l) is finite. R(k,l) ⇥ k + l 2 k 1 By induction: ⇥

R(k,k)≥n 臼a2-coloring of K,no monochromatic K.” a random 2-coloring of Kn: uv Viu,vEKn,uniformly and independently w VSE()event As:S is a monochromaticK Pr[As]=2·2-()=21-() As,Ar dependentsnT2 max degree of dependency8 graph()份('"2) To prove:Pr s∈()
“∃ a 2-coloring of Kn, no monochromatic Kk.” a random 2-coloring of Kn : ⇥S [n] k ⇥ event AS : S is a monochromatic Kk Pr ⇧ ⇤ ⌥ S( [n] k ) AS ⇥ ⌃ ⌅ > 0 R(k,k) ≥ n ∀{u,v}∈Kn, uniformly and independently uv uv AS, AT dependent |S ⇥ T| 2 To prove: Pr[AS] = 2 · 2( k 2) = 21( k 2) max degree of dependency graph d ⇥ k 2 ⇥ n k 2 ⇥

Lovasz Local Lemma 。 Vi,Pr[Al≤p ep(d+1)≤1 Pr[As]=21-() for some n =ck2k/2 "6t with constant c e21-()(d+1)≤1 To prove:Pr s∈() R(k,)≥n=2(k2k/2)
Pr ⇧ ⇤ ⌥ S( [n] k ) AS ⇥ ⌃ To prove: ⌅ > 0 Pr[AS] = 21( k 2) d ⇥ k 2 ⇥ n k 2 ⇥ Lovász Local Lemma • ∀i, Pr[Ai] ≤ p • ep(d + 1) ≤ 1 Pr ⇤ n i=1 Ai ⇥ > 0 R(k,k) ≥ n = (k2k/2) for some e21( k 2) (d + 1) 1 with constant c n = ck2k/2

Ramsey Number Lovasz Local Lemma 2三剑≤(使)-o() k,212 7 8 10 1111 1 1 1 1 1 2123 4 5 7 8 9 10 3136 9 14 18 23 28 36 40-43 4149 18 25 35-41 49-61 56-84 73-115 92-149 51514 25 43-49 58-87 80-143 101-216125-316 143-442 61618 35-4158-87 102-165113-298127-495 169-780 179-1171 71723 496180-143 113-298205-540216-1031233-1713 289-2826 81828 56-84101-216127-495216-1031282-1870317-3583 317-6090 91936 73-115125-316169-780233-1713317-3583565-6588580-12677 1011040-4392-149143-442179-1171289-2826317-6090580-12677798-23556
Ramsey Number k2k/2 ⇥ ⇥ R(k, k) ⇥ ⇤2k 2 k 1 ⌅ = O 4k k Lovász Local Lemma ⇥

Multicolor if nz R(k,D),for any 2-coloring of K there exists a red Kk or a blue K. R(r;k1,k2,.,k) ifn≥R(r;k1,k2,…,k), for any r-coloring of Kn,there exists a monochromatic ki-clique with color i for some ie1,2,....rh. R(T:k1,,k-2,k-l,k)≤R(t-1;k1,,k-2,R(2;k1,k) the mixing color trick: 个 color
R(r; k1, k2, ... , kr) Multicolor if n≥ R(k,l), for any 2-coloring of Kn, there exists a red Kk or a blue Kl. if n ≥ R(r; k1, k2, ... , kr), for any r-coloring of Kn, there exists a monochromatic ki-clique with color i for some i∈{1, 2, ..., r}. R(r; k1, ... , kr-2, kr-1, kr) ≤ R(r-1; k1, ... , kr-2, R(2; kr-1, kr)) the mixing color trick: color
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库2.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库3.pdf
- 《互联网营销理论与工具运用》课程教学资源(讲义)课程标准.docx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)01 走进互联网营销.pptx