南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties

版像 NJUAT 南京大学 人工智能学院 SCHODL OF ARTIFICIAL INTELUGENCE,NANJING UNIVERSITY Lecture 2.Convex Optimization Basics Advanced Optimization(Fall 2023) Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University
Lecture 2. Convex Optimization Basics Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University Advanced Optimization (Fall 2023)

(Constrained)Optimization Problem We adopt a minimization language min f(x) s.t.x∈X optimization variable x e Rd objective function:f:RdR feasible domain:C Rd Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 2
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 2 (Constrained) Optimization Problem • We adopt a minimization language

Unconstrained Optimization The optimization variable is feasible over the whole Ra-space. min f(x) s.t.x∈Rd It is one of the most basic forms of mathematical optimization and serves as the foundations. ---"any optimization problem can be regarded as an unconstrained one" min :f(x) min h(x)f(x)+6x(x) s.t.x∈X s.t.x∈Rd barrier/indicator function 0, 6x(x)= x∈X, 00, x生X. Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 3
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 3 Unconstrained Optimization • • It is one of the most basic forms of mathematical optimization and serves as the foundations. --- “any optimization problem can be regarded as an unconstrained one” barrier/indicator function

Convex Optimization This lecture focuses on the following simplified setting: Language:minimization problem Objective function:continuous and convex Feasible domain:a convex subset of Euclidean space ·What is a convex set? What is a convex function? ·How to minimize? Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 4
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 4 Convex Optimization • This lecture focuses on the following simplified setting: • Language: minimization problem • Objective function: continuous and convex • Feasible domain: a convex subset of Euclidean space • What is a convex set? • What is a convex function? • How to minimize?

Outline Convex Set and Convex Function Convex Optimization Problem Optimality Condition ·Function Properties Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 5
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 5 Outline • Convex Set and Convex Function • Convex Optimization Problem • Optimality Condition • Function Properties

Part 1.Convex Set and Convex Function 。Definition ·Ball and Ellipsoid Convex Hull and Projection Convex/Concave Function Zeroth,First and Second-order Condition Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 6
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 6 Part 1. Convex Set and Convex Function • Definition • Ball and Ellipsoid • Convex Hull and Projection • Convex/Concave Function • Zeroth, First and Second-order Condition

Convex Set Definition 1(Convex Set).A set Y is convex if for any x,y e,all the points on the line segment connecting x and y also belong to t,i.e., a∈0,1,ax+(1-a)y∈X. convex sets? X X Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 7
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 7 Convex Set convex sets?

Examples .A line segment is convex. ·Aray,which has the form{xo+fv|θ≥O},where v≠0,is convex. Any subspace is convex. Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 8
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 8 Examples

Convex Set Definition 2(Ball).A(Euclidean)ball (or just ball)in Rd has the form B(xc;r)={xc+ruull2 <1}. Definition 3(Ellipsoids).A ellipsoid in Rd has the form E(xe,A)={xe+Au|Iu‖2≤1}, where A is assumed to be symmetric and positive definite. Au Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 9
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 9 Convex Set

Convex Set Definition 4(Convex Hull).The convex hull of a set t,denoted conv t,is the set of all convex combinations of points in A: conv={0x1+…+0xkx:∈X,0:≥0,i∈[k],01+…+0=1. Examples: Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 10
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 10 Convex Set Examples:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)07 频域滤波器.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)06 图像频域变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)05 代数运算与几何变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)04 图像复原及锐化.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)03 灰度直方图与点运算.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)02 二值图像与像素关系.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)01 概述 Digital Image Processing.pdf
- 人工智能相关文献资料:Adaptivity and Non-stationarity - Problem-dependent Dynamic Regret for Online Convex Optimization.pdf
- 北京大学出版社:21世纪全国应用型本科电子通信系列《MATLAB基础及其应用教程》实用规划教材(共八章,2007,编著:周开利等).pdf
- 《计算机应用基础》课程教学资源(参考资料)Mathematica CheatSheet.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB Reference Sheet, by Giordano Fusco & Jindich Soukup.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB Reference Sheet, by Sherman Wiggin & Dom Dal Bello.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB Reference Card, by Jesse Knight.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB Quick Reference, by Jialong He.pdf
- 《计算机应用基础》课程教学资源(参考资料)MATLAB_CheatSheet, by Thor Nielsen.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf