南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration

The Twelyefold Way Gian-Carlo Rota (1932-1999)
Gian-Carlo Rota (1932-1999) The Twelvefold Way

The twelvefold way f:N→M N =n,M=m elements elements of N anyf 1-1 on-to of M distinct distinct identical distinct distinct identical identical identical
The twelvefold way f : N M |N| = n, |M| = m elements of N elements of M any f 1-1 on-to distinct distinct identical distinct distinct identical identical identical

Knuth's version (in TAOCP vol.4A) n balls are put into m bins balls per bin: unrestricted ≤1 ≥1 n distinct balls, m distinct bins mn n identical balls, m distinct bins n distinct balls, m identical bins n identical balls, m identical bins
Knuth’s version (in TAOCP vol.4A) balls per bin: unrestricted ≤ 1 ≥ 1 n distinct balls, m distinct bins n identical balls, m distinct bins n distinct balls, m identical bins n identical balls, m identical bins n balls are put into m bins mn

Tuples {1,2,..,m} [m]=0,1,-1} TTNOE MATCH [mn=m××m I(mj"mr Product rule: finite sets S and T |S×T=|S1·lTI
Tuples mn |[m] n| = Product rule: |S ⇥ T| = |S|·|T| finite sets S and T [m] ⇥ ··· ⇥ [m] ⇤ ⇥ ⌅ n [m] n = [m] = {0, 1,...,m 1} {1, 2,...,m}

Functions count the of functions f:[ml→m [n] [m] (f(1),f(2),.,(n)∈[m]n one-one correspondence [n→[m台[m]m
Functions [n] [m] f : [n] [m] count the # of functions [m] n one-one correspondence [n] [m] ⇥ [m] n (f(1), f(2),...,f(n))

Functions count the of functions f:[ml→[m] one-one correspondence [n] [m] [nl→[ml台[m" Bijection rule: finite sets S and T 0:S1-1T →S1=T on-to
Functions [n] [m] f : [n] [m] count the # of functions one-one correspondence [n] [m] ⇥ [m] n Bijection rule: finite sets S and T ⇤ : S 11 ⇥ onto T = |S| = |T|

Functions count the of functions f:[nl→[m one-one correspondence [n] [m] [ml→[m]÷[m" l[m→[mll=l[mr|=m “Combinatorial proof
Functions [n] [m] f : [n] [m] count the # of functions one-one correspondence [n] [m] ⇥ [m] n |[n] [m]| = |[m] n| = mn “Combinatorial proof

Injections count the of 1-1 functions f (nml one-to-one correspondence [n] [m] π=(f(1),f(2),.,f(n)》 n-permutation:E[m]of distinct elements (m)n=m(m-1)(m-n+1)= m! (m-n)! “m lower factorial n
Injections [n] [m] count the # of 1-1 functions one-to-one correspondence [m] n of distinct elements = (f(1), f(2),...,f(n)) n-permutation: = m! (m n)! (m)n = m(m 1)···(m n + 1) “m lower factorial n” f : [n] 1-1 [m]

Subsets subsets of {1,2,3 } ☑, {I,{2},3}, {1,2},{1,3},{2,3} {1,2,3} [m={1,2,..,n} Power set:2Im={SS [n]} 2=
Subsets subsets of { 1, 2, 3 }: ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} Power set: [n] = {1, 2,...,n} 2[n] = 2[n] = {S | S ✓ [n]}

Subsets [ml={1,2,..,n} Power set:2rl ={SSC [n]} 2= Combinatorial proof: A subset S [n]corresponds to a string of n bit, where bit i indicates whether ie S
Subsets Combinatorial proof: Power set: [n] = {1, 2,...,n} 2[n] = A subset S ✓ [n] corresponds to a string of n bit, where bit i indicates whether i 2 S. 2[n] = {S | S ✓ [n]}
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)07 频域滤波器.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)06 图像频域变换.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf