南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory

Extremal Combinatorics "How large or how small a collection of finite objects can be,if it has to satisfy certain restrictions.” set system F2lm with ground set [n]
Extremal Combinatorics “How large or how small a collection of finite objects can be, if it has to satisfy certain restrictions.” F 2[n] set system with ground set [n]

Sunflowers Fa sunflower of size r with center C: IF=r S,T∈F,S∩T=C a sunflower of size 6 with core C
S6 S5 4 S S3 S2 S1 Sunflowers a sunflower of size 6 with core C F a sunflower of size r with center C: |F| = r ⇥S, T F, S ⌅ T = C C

Sunflowers F a sunflower of size r with center C: F=r S,T∈F,S∩T=C a sunflower of size 6 with core 0
S6 S5 4 S S3 S2 S1 Sunflowers a sunflower of size 6 with core F a sunflower of size r with center C: |F| = r ⇥S, T F, S ⌅ T = C

Sunflower Lemma(Erdos-Rado 1960) () F1>k(-1) a sunflower gCF,such that g=r Induction on k.when k=1 () |F|>r-1 3r singletons
Induction on k. when k=1 F [n] 1 ⇥ |F| > r 1 ∃ r singletons F [n] k ⇥ . |F| > k!(r 1)k Sunflower Lemma (Erdős-Rado 1960) ⇥ a sunflower G F, such that |G| = r

Sunflower Lemma (Erdos-Rado 1960) rs(). F1>k(r-1)6E 3a sunflower gC F,such that g=r Fork≥2, take largest gF with disjoint members VS,T∈G that S≠T,SnT=0 case.I: gr,g is a sunflower of size r case.2: |g1≤r-1, Goal:find a popular xe[n]
For k≥2, take largest G F with disjoint members ⇤S, T G that S ⇥= T, S ⌃ T = ⌅ case.1: |G| r, G is a sunflower of size r case.2: |G| ⇥ r 1, Goal: find a popular x∈[n] F [n] k ⇥ . |F| > k!(r 1)k Sunflower Lemma (Erdős-Rado 1960) ⇥ a sunflower G F, such that |G| = r

Sunflower Lemma (Erdos-Rado 1960) () F1>k(r-1) a sunflower gCF,such that g=r lg≤r-1, Goal:find a popular xE[n] consider {S∈F|x∈S remove x H={S\{x}|S∈F∧x∈S} if7H>(k-1)(r-1)-11.H
Goal: find a popular x∈[n] consider H = {S \ {x} | S F ⌅ x S} {S F | x S} remove x H ⇥ [n] k 1 ⇥ if |H| > (k 1)!(r 1) I.H. k1 |G| ⇥ r 1, F [n] k ⇥ . |F| > k!(r 1)k Sunflower Lemma (Erdős-Rado 1960) ⇥ a sunflower G F, such that |G| = r

() 1F1>!(-1) take largest gF with disjoint members g≤r-1,letY=US|Y\≤k(r-1) S∈g claim:Yintersects all SEF if otherwise::3T∈F,T∩Y=0 T is disjoint with all SEg contradiction!
|G| ⇥ r 1, Y = SG let S take largest G F with disjoint members |Y | ⇥ k(r 1) F [n] k ⇥ . |F| > k!(r 1)k claim: Y intersects all S F if otherwise: ⇥T F, T ⇧ Y = ⇤ T is disjoint with all S G contradiction!

e() |F>(r-1) take maximal gF with disjoint members Ig≤r-1,letY=Js Y≤k(r-1) S∈g Y intersects all S∈F pigeonhole:]x∈Y, #ofS∈Fcontainx if 1{S∈F1xeS1 、(r-1) YI 之r-1) =(k-1)川(-1)k-1 H={S\{x}|S∈F∧x∈S k-1 17>(k-1)(-1)-1
H = {S \ {x} | S F ⌅ x S} |G| ⇥ r 1, Y = SG let S take maximal G F with disjoint members |Y | ⇥ k(r 1) pigeonhole: ∃ x∈Y, |{S F | x S}| |F| |Y | F [n] k ⇥ . |F| > k!(r 1)k ⇥ k!(r 1)k k(r 1) = (k 1)!(r 1)k1 H ⇥ [n] k 1 ⇥ |H| > (k 1)!(r 1)k1 Y intersects all S F # of S F contain x

Sunflower Lemma (Erdos-Rado 1960) 1F>(r-1)k> a sunflower gCF,such that g=r 3x∈Y,lett={S\{x}|S∈F∧x∈S ∈() 17H>(k-1)(r-1)k-1 I.H.:H contains a sunflower of size r adding x back,it is a sunflower inF
∃ x∈Y, H = {S \ {x} | S F ⌅ x S} H ⇥ [n] k 1 ⇥ let |H| > (k 1)!(r 1)k1 I.H.: H contains a sunflower of size r adding x back, it is a sunflower in F F [n] k ⇥ . |F| > k!(r 1)k Sunflower Lemma (Erdős-Rado 1960) ⇥ a sunflower G F, such that |G| = r

Sunflower Conjecture IF>c(r)k a sunflower gCF,such that g=r c(r):constant depending only on r Alon-Shpilka-Umans 2012: if sunflower conjecture is true then matrix multiplication is slow
c(r) : constant depending only on r F [n] k ⇥ . Sunflower Conjecture ⇥ a sunflower G F, such that |G| = r |F| > c(r) k Alon-Shpilka-Umans 2012: if sunflower conjecture is true then matrix multiplication is slow
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库2.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库3.pdf
- 《互联网营销理论与工具运用》课程教学资源(讲义)课程标准.docx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)01 走进互联网营销.pptx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)02 互联网营销市场调研.pptx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)03 互联网搜索引擎营销.pptx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)04 互联网电子邮件营销.pptx