南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods

The Sieve Methods
The Sieve Methods

PIE (Principle of Inclusion-Exclusion) |AUB=A+|B|-A∩B AUBUC=A+B+C -A∩B-A∩C-B∩C +AnBnC C BnC AnC AnBnC B AnB
PIE (Principle of Inclusion-Exclusion) |A B| = |A| + |B| |A ⇥ B| |A B C| = |A| + |B| + |C| |A ⇥ B| |A ⇥ C| |B ⇥ C| +|A B C|

PIE (Principle of Inclusion-Exclusion) n= ∑|A-∑IA,nA+ 二1 1≤i≤m 1≤i<j≤n …+(-1)n-1|A1∩…nAnl =∑(--1∩A: IC{1,…,n} I≠0
PIE (Principle of Inclusion-Exclusion) ⇥ n i=1 Ai = 1in |Ai| 1i<jn |Ai ⇥ Aj |+ ··· + (1)n1|A1 ⇤ ··· ⇤ An| = I{1,...,n} I= (1)|I|1 iI Ai

PIE (Principle of Inclusion-Exclusion) A1,A2,...,An CU universe 元nn周-U4 -2,-y-1QA I{1,,n} I≠0 A虹=∩A, Ao=U i∈I
PIE (Principle of Inclusion-Exclusion) A1, A2,...,An U universe A1 ⇥ A2 ⇥ ··· An = U ⇥ n i=1 Ai AI = iI Ai A = U = |U| I{1,...,n} I= (1)|I|1 iI Ai

PIE (Principle of Inclusion-Exclusion) A1,A2,...,An U universe AinA2n…An=(-1)川|Al IC{1,.,n} Ar=∩A, Ao=U i∈1
PIE (Principle of Inclusion-Exclusion) A1, A2,...,An U universe A1 ⇥ A2 ⇥ ··· An = AI = iI Ai A = U I{1,...,n} (1)|I| |AI |

PIE (Principle of Inclusion-Exclusion) A1,A2,:.,AnCU←—universe AinA2∩…An=S0-S1+S2+·+(-1)rSn A=∩A: Ao=U i∈I Sk=∑IA So |Aol Ul I=k
PIE (Principle of Inclusion-Exclusion) A1, A2,...,An U universe A1 ⇥ A2 ⇥ ··· An = AI = iI Ai A = U Sk = |I|=k |AI | S0 = |A| = |U| S0 S1 + S2 + ··· + (1)nSn

Surjections #of f:[n]onto, m] U=[nl→[ml A,=[m]→([m{) 0- ∑(-1)1A iElm] IE[m] Ar=∩A, Ao=U i∈I
Surjections f : [n] onto ⇥ [m] # of U = [n] [m] Ai = [n] ([m] \ {i}) AI = iI Ai A = U I[m] (1)|I| |AI | i[m] Ai =

Surjections U=[nl→[ml A:=[n]→(ml\{i}) Ag=UAr=∩A:=[m→([m\I) i∈I |Ar=(m-1I)' ∩, ∑(-1)4 i∈[ml IC[m] =∑-0(m-”--()m- IC[m] 三-*()
Surjections U = [n] [m] Ai = [n] ([m] \ {i}) AI = iI A = U Ai = [n] ([m] \ I) |AI | = (m |I|) n = ⇤ m k=1 (1)mk m k ⇥ kn = I[m] (1)|I| (m |I|) n I[m] (1)|I| |AI | i[m] Ai = = m k=0 (1)k m k (m k) n

Surjections m (f-1(0),f-1(1),.,f-1(m-1) ordered partition of [m] 网s例=m{n} {}-点2-1-()
Surjections = ⇤ m k=1 (1)mk m k ⇥ kn [n] onto ⇥ [m] (f 1(0), f 1(1),...,f 1(m 1)) ordered partition of [m] [n] onto [m] = m! n m n m = 1 m! m k=1 (1)mk m k kn

Derangement les problemes des rencontres ESSAY DANALYSE Two decks,A and B,of cards: SUR LES JEUX DE HAZARD. The cards of A are laid out in a row, Par M.Remond de Montmort. and those of B are placed at random, one at the top on each card of A. What is the probability that no 2 cards are the same in each pair?
Derangement Two decks, A and B, of cards: The cards of A are laid out in a row, and those of B are placed at random, one at the top on each card of A. What is the probability that no 2 cards are the same in each pair? les problèmes des rencontrés :
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库2.pdf