南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions

Compositions by 1 and 2 of compositions of n #of (1,2,...,xk) with summands from for some k≤m {1,2} x1十·+xk=n x∈{1,2} an an-1 an-2 a0=1a1=1 Case.I Xk=1 x1+··+ck-1=九-1 Case.2 k =2 1+..+xk-1=n-2
# of compositions of n with summands from {1,2} xi {1, 2} Case.1 Case.2 xk = 1 xk = 2 x1 + ··· + xk1 = n 1 x1 + ··· + xk1 = n 2 Compositions by 1 and 2 for some k n # of (x1, x2,...,xk) x1 + ··· + xk = n an = an1 + an2 a0 = 1 a1 = 1

Dominos domino: 名 #of tilings 2 n an an-1 an-2 a0=1a1=1 Case.I 0… 2×(n-1) Case.2 2x(n-2)
Dominos domino: 1 2 2 n # of tilings Case.1 Case.2 2×(n-1) 2×(n-2) an = an1 + an2 a0 = 1 a1 = 1

Fibonacci number Fn-1+Fn-2ifn≥2, En= if n =1 0 if n 0
Fibonacci number Fn = ⌅⇤ ⌅⇥ Fn1 + Fn2 if n 2, 1 if n = 1 0 if n = 0

full parenthesization of n+1 factors ((ab)c)d (a(bc))d (ab)(cd)a((bc)d)a(b(cd)) full binary trees with n+1 leaves 心公公
full binary trees with n+1 leaves ((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd)) full parenthesization of n+1 factors

Catalan Number On:of full binary trees with n+1 leaves 个公公 Recursion: Ck Cn-1-k Co=1forn≥1, m-1 Cn=∑CCn-1-k k=0
Cn = n 1 k=0 CkCn1k C0 = 1 for n 1, Ck Cn1k Cn : # of full binary trees with n+1 leaves Catalan Number Recursion:

Generating Functions
Generating Functions

Generating Functions: Enumerative Combinatorics "the most useful but most RICHARD P.STANLEY difficult to understand method (for counting)' CONCRETE MATHEMATICS AHAM KNUTH PATASHN "the most powerful way to deal with sequences of numbers,as far as anybody knows
“the most useful but most difficult to understand method (for counting)” Generating Functions: “the most powerful way to deal with sequences of numbers, as far as anybody knows

generate enumerate all subsets of {O,●,O} (x0+x2)(ax0+x2)(x0+x2) =2x020+x0xx1+20x'x0+20zlxI +x1x0x0+x1a0x1+x1x1a0+1xx1 (1+x)3=1+3a+3x2+x3 coefficient ofx:of k-subsets
{ , , } enumerate all subsets of generate (x0 + x1)(x0 + x1)(x0 + x1) = + + + + + + + x1 x0x0x0 x0x0x1 x0 x0 x1 x0 x1 x1 x0 x0 x1 x0 x1 x1 x0 x1 x1 x1 x1 (1 + x) 3 =1+3x + 3x2 + x3 coefficient of xk : # of k-subsets

O,O,O ●,●,0,●, ○,0,0,0,○} (1+x+x2+x3) (1+x+x2+x3+x4) (1+x+x2+x3+x4+x5) 1+3x+6x2+10x3+14x4+17x5+18x6 +17x7+14x8+10x9+6x10+3x11+x12
(1 + x + x2 + x3) (1 + x + x2 + x3 + x4) (1 + x + x2 + x3 + x4 + x5) { } , , , , , , , , , , , = 1+3x + 6x2 + 10x3 + 14x4 + 17x5 + 18x6 +17x7 + 14x8 + 10x9 + 6x10 + 3x11 + x12

Double Decks choose m cards from 2 decks of n cards (9+1+x)(唱+吃+z)…(a%+xh+x品) of m-order terms coefficient of xm in (1+x+2)
Double Decks (x0 1 + x1 1 + x2 1) (x0 2 + x1 2 + x2 2) ···(x0 n + x1 n + x2 n) # of m-order terms (1 + x + x2) n coefficient of xm in 2 deck of s n cards choose m cards from
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)07 频域滤波器.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf