南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging

吸窖 NJUAT 南京大学 人工智能学院 SCHODL OF ARTIFICIAL INTELUGENCE,NANJING UNIVERSITY Lecture 7.Online Mirror Descent Advanced Optimization(Fall 2023) Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University
Lecture 7. Online Mirror Descent Peng Zhao zhaop@lamda.nju.edu.cn Nanjing University Advanced Optimization (Fall 2023)

Outline Algorithmic Framework ·Regret Analysis Interpretation from Primal-Dual View Follow-the-Regularized Leader Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 2
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 2 Outline • Algorithmic Framework • Regret Analysis • Interpretation from Primal-Dual View • Follow-the-Regularized Leader

Recap:Reinvent Hedge Algorithm Proximal update rule for OGD: X1=竖{mx,c》+x-x卧 Proximal update rule for Hedge: x+1=arg minn(x Vfi(x))+KL(x) x∈X More possibility:changing the distance measure to a more general form using Bregman divergence =arg min n f()+D(xx) x∈X Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 3
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 3 Recap: Reinvent Hedge Algorithm • Proximal update rule for OGD: • Proximal update rule for Hedge: • More possibility: changing the distance measure to a more general form using Bregman divergence

Bregman Divergence Definition 1(Bregman Divergence).Let be a strongly convex and differ- entiable function over a convex set t,then for any x,y e A,the bregman divergence D associated to is defined as D(x,y)=(x)-(y)-(V(y),x-y Bregman divergence measures the difference of a function and its linear approximation. D.x.y Using second-order Taylor expansion,we know 0(y)+(7y),x-y〉 Do(y)llx-yo for some∈[x,yl. Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 4
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 4 Bregman Divergence • Bregman divergence measures the difference of a function and its linear approximation. • Using second-order Taylor expansion, we know

Bregman Divergence Definition 1(Bregman Divergence).Let be a strongly convex and differ- entiable function over a convex set t,then for any x,y e A,the bregman divergence D associated to is defined as Db(x,y)=(x)-(y)-((y),x-y). Table 1:Choice of ()and the corresponding Bregman divergence. (x) D(x,y) Squared L2-distance Ilxl llx-yll Mahalanobis distance x☒ llx-yll Negative entropy ∑i log KL(xlly) Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 5
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 5 Bregman Divergence

Online Mirror Descent Online Mirror Descent At each round t=1,2,... X+1=arg min xEY {nx,Vf(x》+Dw(x,x} where D(x,y)=(x)-(y)-(Vu(y),x-y)is the Bregman divergence. .()is a required to be strongly convex and differentiable over a convex set. Strong convexity of will ensure the uniqueness of the minimization problem, and actually we further need some analytical assumptions (see later mirror map defintion)to ensure the solutions'feasibility in domain t. Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 6
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 6 Online Mirror Descent Online Mirror Descent

Online Mirror Descent So we can unify OGD and Hedge from the same view of OMD. x=arg min x Vfi(x))+Du(xx) x∈X Algo. OMD/proximal form () nt RegretT OGD x+1=agin{xfx》+号Ix-x x O(VT) x∈X N Hedge =arg min Vf())+KL() xilogi O(√Tlog N] x∈AN We also learn ONS for exp-concave functions,can it be included? Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 7
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 7 Online Mirror Descent • So we can unify OGD and Hedge from the same view of OMD. OGD Hedge Algo. OMD/proximal form • We also learn ONS for exp-concave functions, can it be included?

Recap:ONS in a view of Proximal Gradient Convex Problem Exp-concave Problem Property:f(x)≥fy)+Vf(y)T(x-y) Property:fi(x)>fi(y)+Vf(y)(x-y) +号Ix-yI6w ocD. ONS:A:=A:-1+Vfi(x:)Vfi(xt)T x1=咬刘】 Proximal type update: 1=agxx》+2玩K-x侣 Proximal type update: x∈X X41=arg min(,》+3引x-x. x∈X Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 8
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 8 Recap: ONS in a view of Proximal Gradient Convex Problem Property: Proximal type update: OGD: Exp-concave Problem Property: Proximal type update: ONS:

Online Mirror Descent Our previous mentioned algorithms can all be covered by OMD. Algo. OMD/proximal form () nt Regretr OGD for lxll O(VT) convex X4+1=argminn,Vf(x》+专k-x服 XEX OGD for strongly c. argemin ne(x Vfi(x) 'x侶 品 O(日logT) X∈X ONS for exp-concave X+1=are minn,Vfix》+5x-x房 Ix 17 O(号1ogT) x∈X Hedge for PEA x+1=arg min m(x,Vfi(x))+KL(xx) zi log xi T O(Tlog N) x∈△N Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 9
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 9 Online Mirror Descent • Our previous mentioned algorithms can all be covered by OMD. OGD for convex OGD for strongly c. ONS for exp-concave Hedge for PEA Algo. OMD/proximal form

General Regret Analysis for OMD OMD update: x=arg min n(x Vf()+(xx) x∈X Lemma 1(Mirror Descent Lemma).Let D be the Bregman divergence w.r.t.: X→R and assume少to be X--strongly convex with respect to a norm‖·‖.Then, ∀u∈X,the following inequality holds )-i四≤D,ux刘-D,ax+月+紧 2--Dv(Xt+1,x:) n bias term(range term) variance term(stability term) negative term Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 10
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 10 General Regret Analysis for OMD OMD update: bias term (range term) variance term (stability term) negative term
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)09 形态学及其应用.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)08 压缩编码.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)07 频域滤波器.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)06 图像频域变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)05 代数运算与几何变换.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)04 图像复原及锐化.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)03 灰度直方图与点运算.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)02 二值图像与像素关系.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)01 概述 Digital Image Processing.pdf
- 人工智能相关文献资料:Adaptivity and Non-stationarity - Problem-dependent Dynamic Regret for Online Convex Optimization.pdf
- 北京大学出版社:21世纪全国应用型本科电子通信系列《MATLAB基础及其应用教程》实用规划教材(共八章,2007,编著:周开利等).pdf
- 《计算机应用基础》课程教学资源(参考资料)Mathematica CheatSheet.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf