南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting

Polya's Theory of Counting INEQUALITIES S8R t a new aspect of mathematical mechod G.POLYA G.Hardy,J.E.&G.Polyo Cambridge Mathematical Library George Polya (1887-1985)
Pólya’s Theory of Counting George Pólya (1887-1985)

Counting with Symmetry Rotation ǒh.6 0d Rotation Reflection:
Counting with Symmetry Rotation : Rotation & Reflection:

Symmetries
Symmetries

Symmetry rotation reflection configuration x [n]->[m] X (m]ln] positions colors permutation π:[n 1m on-to
Symmetry 0 1 2 3 4 5 rotation reflection configuration x : [n] ! [m] X = [m] [n] positions colors permutation ⇡ : [n] 1-1 ! on-to [n]

Permutation Groups group(G,)with binary operator·:G×G→G ·closure:π,o∈G→π·o∈G ·associativity::π·(o·T)=(π·o)·T 。identity:e∈G,Vπ∈G,e·T=π 。inverse:Vπ∈G,o∈G,π·o=o·π=e 0=π-1 commutative (abelian)group: π·0=0·π symmetric group S.:all permutations cyclic group Cn:rotations Dihedral group D:rotations reflections
Permutation Groups group (G, ·) with binary operator · : G ⇥ G ! G • closure: • associativity: • identity: • inverse: ⇡, 2 G ) ⇡ · 2 G ⇡ · ( · ⌧ )=(⇡ · ) · ⌧ = ⇡1 8⇡ 2 G, 9 2 G, ⇡ · = · ⇡ = e 9e 2 G, 8⇡ 2 G, e · ⇡ = ⇡ commutative (abelian) group: ⇡ · = · ⇡ symmetric group cyclic group Dihedral group Sn Cn Dn : all permutations : rotations : rotations & reflections

Permutation Groups symmetric group S:all permutations r:列m on-to cyclic group Cn:rotations π=(012…n-1)π(i)=(i+1)modn (012…n-1)》generated by(012..n-1) Dihedral group D:rotations reflections p()=(n-1)-i generated by (012...n-1)and p
Permutation Groups symmetric group cyclic group Dihedral group Sn Cn Dn : all permutations : rotations : rotations & reflections ⇡ : [n] 1-1 ! on-to [n] h(012 ··· n 1)i generated by (012 ··· n 1) ⇡ = (012 ··· n 1) ⇡(i)=(i + 1) mod n generated by (012 ··· n 1) and ⇢(i)=(n 1) i ⇢

Group Action configuration x:[n][m] X (m]linl permutation π:m1m group G on-to (πox)(i)=x(π() group action o:G×X→X ·associativity:((π·o)ox=To(oox) ·identity::eor=r
Group Action 0 1 2 3 4 5 0 1 2 3 4 5 configuration x : [n] ! [m] permutation ⇡ : [n] 1-1 ! on-to [n] group action X = [m] [n] group G : G ⇥ X ! X • associativity: • identity: (⇡ · ) x = ⇡ ( x) e x = x (⇡ x)(i) = x(⇡(i))

Graph Isomorphism (Gl)Problem input:two undirected graphs G and H output:G≈H? p n 6) vertices 8 7 ^b Gl is in NP,but is NOT known to be in P or NPC trivial algorithm:O(n!)time Babai-Luks'83:20(vmlogn)time Babai 2015:a quasi-polynomial time algorithm! npolylog(n)=2polylog(n)
Graph Isomorphism (GI) Problem ? • GI is in NP, but is NOT known to be in P or NPC • trivial algorithm: O(n!) time • Babai-Luks ’83: time n vertices Babai 2015: a quasi-polynomial time algorithm! npolylog(n) = 2polylog(n) 2O( pn log n) ⇠ = input: two undirected graphs G and H output: G ⇠ = H ?

String Isomorphism (SI) input:two strings x,y:[n][m] a permutation group G Sn output::x≈cy?(3o∈Gs.t.oox=y)
input: two strings a permutation group output: String Isomorphism (SI) ⇠ = ? x, y : [n] ! [m] G ✓ Sn x ⇠ =G y? (9 2 G s.t. x = y)

String Isomorphism (SI) input:two strings a,y [n][m] a permutation group G Sn output:x≥cy?(3o∈Gs.t.oox=y) a graph X(V,E)is a string :() →0, 1:edge 0:no edge positions←→vertex-.pairs all permutations on V induces a permutation group on Johnson group:SCS() on vertex pairs two graphs≈iff their string versions兰sgy
String Isomorphism (SI) a graph X(V,E) is a string x : ✓V 2 ◆ ! {0, 1} all permutations on V induces a permutation group on on vertex pairs two graphs X ⇠ = Y iff their string versions x ⇠ =S(2) V y positions ⟷ vertex-pairs 1: edge 0: no edge Johnson group: input: two strings a permutation group output: x, y : [n] ! [m] G ✓ Sn x ⇠ =G y? (9 2 G s.t. x = y) S(2) V ⇢ S( V 2 ) ✓V 2 ◆
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 01 Introduction; Mathematical Background.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)11 图像特征分析.pdf
- 南京大学:《数字图像处理》课程教学资源(课件讲义)10 图像分割.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库2.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库3.pdf
- 《互联网营销理论与工具运用》课程教学资源(讲义)课程标准.docx