南京大学:《组合数学》课程教学资源(课堂讲义)极值图论 Extremal graph theory

Extremal Combinatorics "how large or how small a collection of finite objects can be,if it has to satisfy certain restrictions
Extremal Combinatorics “how large or how small a collection of finite objects can be, if it has to satisfy certain restrictions

Extremal Problem: "What is the largest number of edges that an n-vertex cycle-free graph can have?" (n-1) Extremal Graph: spanning tree
“What is the largest number of edges that an n-vertex cycle-free graph can have?” Extremal Problem: Extremal Graph: (n-1) spanning tree

Triangle-free graph contains no△,as subgraph Example:bipartite graph is maximized for complete balanced bipartite graph Extremal
Triangle-free graph contains no as subgraph Example: bipartite graph |E| is maximized for complete balanced bipartite graph Extremal ?

Mantel's Theorem Theorem (Mantel 1907) If G(V,E)has IV=n and is triangle-free,then n2 E≤ 4 For n is even, extremal graph: K受,号
Mantel’s Theorem Theorem (Mantel 1907) |E| n2 4 . If G(V,E) has |V|=n and is triangle-free, then For n is even, extremal graph: K n 2 , n 2

△-free→lEl≤n2/4 First Proof.Induction on n. Basis:n=1,2.trivial Induction Hypothesis:for any nN n2 1E> →G2△ 4 Induction step:for n=N due to I.H.E(B)<(n-2)2/4 7 E(A,B)川=|E-|E(B)川-1 n2_ 4 m-22-1=n-2 4 pigeonhole!
Induction on n. Induction Hypothesis: for any n 㱺 G ⊇ n2 4 First Proof. A B due to I.H. |E(B)| ≤ (n-2)2/4 |E(A, B)| = |E| |E(B)| 1 > n2 4 (n 2)2 4 1 = n 2 pigeonhole!

△-free→lEl≤n2/4 Second Proof. (d+d)=∑d品 uv∈E w∈V △-free→du+d,≤n→(d+dw)≤nlE uu∈E Cauchy-Schwarz 4E2 (handshaking) m n网≥d+d)=上e区a- 4E2 m uU∈E m
-free 㱺 |E| ≤ n2/4 Second Proof. uvE (du + dv) = vV d2 v u v (du + dv) Cauchy-Schwarz ⇤ vV d2 v 1 n ⇤ vV dv ⇥2 = 4|E| 2 n -free ⇥ du + dv n ⇥ uvE (du + dv) n|E| n|E| ⌅ uvE (du + dv) = ⌅ vV d2 v ⇤ vV dv ⇥2 n = 4|E| 2 n (handshaking)

△,-free→lEl≤n2/4 Second Proof. ∑(d+d)=∑品 uw∈E w∈V △-free→d,+d≤n→ ∑(d.+d)≤mE uU∈E Cauchy-Schwarz 4E2 (handshaking) m nE≥ 4E2 n2 > E≤ m 4
-free 㱺 |E| ≤ n2/4 Second Proof. uvE (du + dv) = vV d2 v Cauchy-Schwarz ⇤ vV d2 v 1 n ⇤ vV dv ⇥2 = 4|E| 2 n -free ⇥ du + dv n ⇥ uvE (du + dv) n|E| n|E| 4|E| 2 n (handshaking) |E| n2 4 u v (du + dv)

△-free→lEl≤n2/4 Third Proof. A:maximum independent set a IAl independent v∈V,d,≤a B=V\A B incident to all edges B=IBl Inequality of the arithmetic and geometric mean B scaa≤(2)-
-free 㱺 |E| ≤ n2/4 Third Proof. A: maximum independent set B = V \ A α = |A| β = |B| v ⇤ ⇥ ⌅ dv independent ⇤v ⇥ V, dv B B incident to all edges ⇥ + ⇥ 2 ⇥2 |E| vB dv = n2 4 Inequality of the arithmetic and geometric mean

Turan's Theorem "Suppose G is a Kr-free graph. What is the largest number of edges that G can have?" Paul Turan (1910-1976)
Turán's Theorem Paul Turán (1910-1976) “Suppose G is a Kr -free graph. What is the largest number of edges that G can have?

Turan's Theorem Theorem(Turan 1941) If G(V,E)has IVl=n and is K,-free,then r-2 E≤ n2. 2(r-1
Turán's Theorem Theorem (Turán 1941) If G(V,E) has |V|=n and is Kr-free, then |E| ⇥ r 2 2(r 1)n2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学》课程教学资源(课堂讲义)存在性问题 Existence problems.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Ramsey理论 Ramsey theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Pólya计数法 Pólya's theory of counting.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)Cayley公式 Cayley's formula.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)筛法 Sieve methods.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)生成函数 Generating functions.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)基本计数 Basic enumeration.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)课程简介 Combinatorics Introduction(主讲:尹一通).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 13 Advanced Topics - non-stationary online learning, universal online learning, online ensemble, base algorithm, meta algorithm.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 12 Stochastic Bandits - MAB, UCB, linear bandits, self-normalized concentration, generalized linear bandits.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 11 Adversarial Bandits - MAB, IW estimator, Exp3, lower bound, BCO, gradient estimator, self-concordant barrier.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 10 Online Learning in Games - two-player zero-sum games, repeated play, minimax theorem, fast convergence.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 09 Optimistic Online Mirror Descent - optimistic online learning, predictable sequence, small-loss bound, gradient-variance bound, gradient-variation bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 08 Adaptive Online Convex Optimization - problem-dependent guarantee, small-loss bound, self-confident tuning, small-loss OCO, self-bounding property bound.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 07 Online Mirror Descent - OMD framework, regret analysis, primal-dual view, mirror map, FTRL, dual averaging.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 06 Prediction with Expert Advice - Hedge, minimax bound, lower bound; mirror descent(motivation and preliminary).pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 05 Online Convex Optimization - OGD, convex functions, strongly convex functions, online Newton step, exp-concave functions.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 04 GD Methods II - GD method, smooth optimization, Nesterov’s AGD, composite optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 03 GD Methods I - GD method, Lipschitz optimization.pdf
- 南京大学:《高级优化 Advanced Optimization》课程教学资源(讲稿)Lecture 02 Convex Optimization Basics; Function Properties.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)极值集合论 Extremal set theory.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)概率法 The probabilistic method.pdf
- 南京大学:《组合数学》课程教学资源(课堂讲义)匹配论 Matching theory.pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)01 基础(主讲:詹德川).pdf
- 南京大学:《高级机器学习》课程教学资源(课件讲稿)02 典型方法.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目一 走进互联网营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目二 互联网营销市场调研.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目三 互联网搜索引擎营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目四 互联网电子邮件营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目五 互联网社交媒体营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目六 互联网视频营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目七 互联网直播营销.pdf
- 《互联网营销理论与工具运用》课程教学资源(教案)项目八 互联网营销方案策划.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库1.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库2.pdf
- 《互联网营销理论与工具运用》课程教学资源(习题)题库3.pdf
- 《互联网营销理论与工具运用》课程教学资源(讲义)课程标准.docx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)01 走进互联网营销.pptx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)02 互联网营销市场调研.pptx
- 《互联网营销理论与工具运用》课程教学资源(PPT课件)03 互联网搜索引擎营销.pptx