中国高校课件下载中心 》 教学资源 》 大学文库

《电动力学》课程教学资源(书籍教材)电磁场理论PDF电子版 ELECTRO MAGNETIC FIELD THEORY(英文版)

文档信息
资源类别:文库
文档格式:PDF
文档页数:195
文件大小:942.49KB
团购合买:点击进入团购
内容简介
《电动力学》课程教学资源(书籍教材)电磁场理论PDF电子版 ELECTRO MAGNETIC FIELD THEORY(英文版)
刷新页面文档预览

EELECTROMAGNETICFIELDTHEORYrBo ThideMEUPSNDIAIL00由

“main” 2000/11/13 page 1 ￾ ￾ ￾ ￾ ELECTRO MAGNETIC FIELD THEORY Υ Bo Thidé U P S I L O N M E D I A

ELECTROMAGNETICFIELD THEORYBo ThideSwedishInstituteof SpacePhysicsandDepartment of Astronomy and Space PhysicsUppsala University, SwedenrUPSILONMEDIAUPPSALASWEDEN④①

“main” 2000/11/13 page 1 ￾ ￾ ￾ ￾ ELECTROMAGNETIC FIELD THEORY Bo Thidé Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden Υ U P S I L O N M E D I A · U P P S A L A · S W E D E N

EContentsPrefacexi11ClassicalElectrodynamics11.1Electrostatics11.1.1Coulomb'slaw21.1.2The electrostaticfield41.2MagnetostaticsX1.2.1Ampere'slaw1.2.26The magnetostatic field81.3Electrodynamics91.3.1Equation of continuity91.3.2Maxwell'sdisplacementcurrent1.3.310Electromotiveforce111.3.4Faraday's law of induction141.3.5Maxwell'smicroscopicequations141.3.6Maxwell'smacroscopicequations151.4ElectromagneticDualityExample 1.1Duality of the electromagnetodynamic equations 16Example 1.2 Maxwell from Dirac-Maxwell equations for a17fixed mixing angle...18Example 1.3 The complex field six-vector19Example 1.4 Duality expressed in the complex field six-vector20Bibliography232Electromagnetic Waves242.1Thewaveequation242.1.1The wave equation for E2.1.224The wave equation for B252.1.3The time-independent wave equation for E2.226Planewaves272.2.1Telegrapher's equationi①由D

“main” 2000/11/13 page i ￾ ￾ ￾ ￾ Contents Preface xi 1 Classical Electrodynamics 1 1.1 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Coulomb’s law . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 The electrostatic field . . . . . . . . . . . . . . . . . . 2 1.2 Magnetostatics . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Ampère’s law . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 The magnetostatic field . . . . . . . . . . . . . . . . . 6 1.3 Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Equation of continuity . . . . . . . . . . . . . . . . . 9 1.3.2 Maxwell’s displacement current . . . . . . . . . . . . 9 1.3.3 Electromotive force . . . . . . . . . . . . . . . . . . . 10 1.3.4 Faraday’s law of induction . . . . . . . . . . . . . . . 11 1.3.5 Maxwell’s microscopic equations . . . . . . . . . . . 14 1.3.6 Maxwell’s macroscopic equations . . . . . . . . . . . 14 1.4 Electromagnetic Duality . . . . . . . . . . . . . . . . . . . . 15 Example 1.1 Duality of the electromagnetodynamic equations 16 Example 1.2 Maxwell from Dirac-Maxwell equations for a fixed mixing angle . . . . . . . . . . . . . . . 17 Example 1.3 The complex field six-vector . . . . . . . . 18 Example 1.4 Duality expressed in the complex field six-vector 19 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Electromagnetic Waves 23 2.1 The wave equation . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.1 The wave equation for E . . . . . . . . . . . . . . . . 24 2.1.2 The wave equation for B . . . . . . . . . . . . . . . . 24 2.1.3 The time-independent wave equation for E . . . . . . 25 2.2 Plane waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Telegrapher’s equation . . . . . . . . . . . . . . . . . 27 i

EiiCONTENTS292.2.2Waves in conductive media302.3Observablesandaverages31Bibliography333ElectromagneticPotentials333.1The electrostatic scalar potential343.2The magnetostatic vector potential343.3The electromagnetic scalar and vector potentials363.3.1Electromagneticgauges36Lorentzequationsfortheelectromagneticpotentials36Gaugetransformations3.3.2Solution of the Lorentz equations for the electromag-38neticpotentials41The retarded potentials41Bibliography434TheElectromagnetic Fields454.1The magnetic field474.2Theelectricfield49Bibliography515.Relativistic Electrodynamics515.1The special theoryofrelativity525.1.1The Lorentz transformation535.1.2Lorentz space54Metrictensor54Radius four-vector in contravariant and covariant form55Scalarproductand norm56Invariantlineelementandpropertime57Four-vectorfields57TheLorentz transformation matrix58TheLorentzgroup585.1.3Minkowskispace615.2Covariant classical mechanics625.3Covariantclassicalelectrodynamics625.3.1The four-potential5.3.263The Lienard-Wiechert potentials655.3.3The electromagnetic field tensor67BibliographyDraftverssion released 13th November 2000 at 22:01.Downloadedfrorse/CED/Bookmhttp://①由由

“main” 2000/11/13 page ii ￾ ￾ ￾ ￾ ii CONTENTS 2.2.2 Waves in conductive media . . . . . . . . . . . . . . . 29 2.3 Observables and averages . . . . . . . . . . . . . . . . . . . . 30 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Electromagnetic Potentials 33 3.1 The electrostatic scalar potential . . . . . . . . . . . . . . . . 33 3.2 The magnetostatic vector potential . . . . . . . . . . . . . . . 34 3.3 The electromagnetic scalar and vector potentials . . . . . . . . 34 3.3.1 Electromagnetic gauges . . . . . . . . . . . . . . . . 36 Lorentz equations for the electromagnetic potentials . 36 Gauge transformations . . . . . . . . . . . . . . . . . 36 3.3.2 Solution of the Lorentz equations for the electromag￾netic potentials . . . . . . . . . . . . . . . . . . . . . 38 The retarded potentials . . . . . . . . . . . . . . . . . 41 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 The Electromagnetic Fields 43 4.1 The magnetic field . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 The electric field . . . . . . . . . . . . . . . . . . . . . . . . 47 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5 Relativistic Electrodynamics 51 5.1 The special theory of relativity . . . . . . . . . . . . . . . . . 51 5.1.1 The Lorentz transformation . . . . . . . . . . . . . . 52 5.1.2 Lorentz space . . . . . . . . . . . . . . . . . . . . . . 53 Metric tensor . . . . . . . . . . . . . . . . . . . . . . 54 Radius four-vector in contravariant and covariant form 54 Scalar product and norm . . . . . . . . . . . . . . . . 55 Invariant line element and proper time . . . . . . . . . 56 Four-vector fields . . . . . . . . . . . . . . . . . . . . 57 The Lorentz transformation matrix . . . . . . . . . . . 57 The Lorentz group . . . . . . . . . . . . . . . . . . . 58 5.1.3 Minkowski space . . . . . . . . . . . . . . . . . . . . 58 5.2 Covariant classical mechanics . . . . . . . . . . . . . . . . . 61 5.3 Covariant classical electrodynamics . . . . . . . . . . . . . . 62 5.3.1 The four-potential . . . . . . . . . . . . . . . . . . . 62 5.3.2 The Liénard-Wiechert potentials . . . . . . . . . . . . 63 5.3.3 The electromagnetic field tensor . . . . . . . . . . . . 65 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Downloaded from http://www.plasma.uu.se/CED/Book Draft version released 13th November 2000 at 22:01

Eili69Interactions of Fields and Particles6696.1ChargedParticlesinanElectromagneticField696.1.1Covariant equations of motion69Lagrangeformalism72Hamiltonianformalism766.2CovariantFieldTheoryLagrange-Hamilton formalism for fields and interactions 776.2.180TheelectromagneticfieldExample 6.1 Field energy difference expressed in the field81tensor84Otherfields85Bibliography877InteractionsofFieldsandMatter877.1Electricpolarisationandtheelectricdisplacementvector877.1.1Electricmultipolemoments907.2Magnetisation and the magnetising field917.3Energy and momentum927.3.1The energy theorem inMaxwell's theory937.3.2Themomentumtheorem inMaxwell'stheory95Bibliography978Electromagnetic Radiation978.1Theradiationfields998.2Radiatedenergy1008.2.1Monochromatic signals8.2.2100Finitebandwidth signals8.3102Radiationfromextendedsources8.3.1102Linearantenna1048.4Multipoleradiation8.4.1104The Hertz potential8.4.2108Electricdipoleradiation8.4.3109Magnetic dipole radiation1108.4.4Electric quadrupole radiation8.5111Radiation froma localised charge inarbitrarymotion1128.5.1TheLienard-Wiechert potentials8.5.2114Radiationfromanacceleratedpointcharge121Example 8.1 The fields from a uniformly moving chargeExample8.2Theconvectionpotential and theconvection123forceDraft vered13thNoyber2000at 22:01.Downloadedfromhttp://ww.plase/CED/Book①由④

“main” 2000/11/13 page iii ￾ ￾ ￾ ￾ iii 6 Interactions of Fields and Particles 69 6.1 Charged Particles in an Electromagnetic Field . . . . . . . . . 69 6.1.1 Covariant equations of motion . . . . . . . . . . . . . 69 Lagrange formalism . . . . . . . . . . . . . . . . . . 69 Hamiltonian formalism . . . . . . . . . . . . . . . . . 72 6.2 Covariant Field Theory . . . . . . . . . . . . . . . . . . . . . 76 6.2.1 Lagrange-Hamilton formalism for fields and interactions 77 The electromagnetic field . . . . . . . . . . . . . . . . 80 Example 6.1 Field energy difference expressed in the field tensor . . . . . . . . . . . . . . . . . . . . . 81 Other fields . . . . . . . . . . . . . . . . . . . . . . . 84 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7 Interactions of Fields and Matter 87 7.1 Electric polarisation and the electric displacement vector . . . 87 7.1.1 Electric multipole moments . . . . . . . . . . . . . . 87 7.2 Magnetisation and the magnetising field . . . . . . . . . . . . 90 7.3 Energy and momentum . . . . . . . . . . . . . . . . . . . . . 91 7.3.1 The energy theorem in Maxwell’s theory . . . . . . . 92 7.3.2 The momentum theorem in Maxwell’s theory . . . . . 93 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8 Electromagnetic Radiation 97 8.1 The radiation fields . . . . . . . . . . . . . . . . . . . . . . . 97 8.2 Radiated energy . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.2.1 Monochromatic signals . . . . . . . . . . . . . . . . . 100 8.2.2 Finite bandwidth signals . . . . . . . . . . . . . . . . 100 8.3 Radiation from extended sources . . . . . . . . . . . . . . . . 102 8.3.1 Linear antenna . . . . . . . . . . . . . . . . . . . . . 102 8.4 Multipole radiation . . . . . . . . . . . . . . . . . . . . . . . 104 8.4.1 The Hertz potential . . . . . . . . . . . . . . . . . . . 104 8.4.2 Electric dipole radiation . . . . . . . . . . . . . . . . 108 8.4.3 Magnetic dipole radiation . . . . . . . . . . . . . . . 109 8.4.4 Electric quadrupole radiation . . . . . . . . . . . . . . 110 8.5 Radiation from a localised charge in arbitrary motion . . . . . 111 8.5.1 The Liénard-Wiechert potentials . . . . . . . . . . . . 112 8.5.2 Radiation from an accelerated point charge . . . . . . 114 Example 8.1 The fields from a uniformly moving charge . 121 Example 8.2 The convection potential and the convection force . . . . . . . . . . . . . . . . . . . . . 123 Draft version released 13th November 2000 at 22:01. Downloaded from http://www.plasma.uu.se/CED/Book

EivCONTENTS125Radiationforsmallvelocities1278.5.3BremsstrahlungExample8.3Bremsstrahlungforlowspeedsandshortac130celerationtimes1328.5.4Cyclotronandsynchrotronradiation134Cyclotronradiation134Synchrotron radiation137Radiation in the general case137Virtual photons1398.5.5Radiation from charges moving inmatter142Vavilov-Cerenkov radiation147Bibliography149FFormulae149F.1The Electromagnetic Field149F.1.1Maxwell's equations149Constitutiverelations149F.1.2Fields and potentials149Vector and scalar potentials150Lorentz'gauge condition in vacuum150F.1.3Force and energy150Poynting's vector150Maxwell's stress tensorF.2150Electromagnetic RadiationF.2.1Relationshipbetweenthefieldvectorsinaplanewave150F.2.2150The far fields from an extended source distributionF.2.3150The far fields from an electric dipoleF.2.4151ThefarfieldsfromamagneticdipoleF.2.5151Thefarfields from an electricquadrupoleF.2.6151The fields from a point charge in arbitrary motionF.2.7151The fields from a point charge in uniform motionF.3152Special RelativityF.3.1152MetrictensorF.3.2152Covariant and contravariant four-vectors152F.3.3Lorentztransformationof afour-vectorF.3.4152Invariantlineelement152F.3.5Four-velocity153F.3.6Four-momentumF.3.7153Four-current densityF.3.8153Four-potentialDraft version released 13th November 2000 at 22:01.Downloaded fromhttp://ww.pla.se/CED/Book①由由

“main” 2000/11/13 page iv ￾ ￾ ￾ ￾ iv CONTENTS Radiation for small velocities . . . . . . . . . . . . . 125 8.5.3 Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . 127 Example 8.3 Bremsstrahlung for low speeds and short ac￾celeration times . . . . . . . . . . . . . . . . 130 8.5.4 Cyclotron and synchrotron radiation . . . . . . . . . . 132 Cyclotron radiation . . . . . . . . . . . . . . . . . . . 134 Synchrotron radiation . . . . . . . . . . . . . . . . . . 134 Radiation in the general case . . . . . . . . . . . . . . 137 Virtual photons . . . . . . . . . . . . . . . . . . . . . 137 8.5.5 Radiation from charges moving in matter . . . . . . . 139 Vavilov-Cerenk ˇ ov radiation . . . . . . . . . . . . . . 142 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 F Formulae 149 F.1 The Electromagnetic Field . . . . . . . . . . . . . . . . . . . 149 F.1.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . 149 Constitutive relations . . . . . . . . . . . . . . . . . . 149 F.1.2 Fields and potentials . . . . . . . . . . . . . . . . . . 149 Vector and scalar potentials . . . . . . . . . . . . . . 149 Lorentz’ gauge condition in vacuum . . . . . . . . . . 150 F.1.3 Force and energy . . . . . . . . . . . . . . . . . . . . 150 Poynting’s vector . . . . . . . . . . . . . . . . . . . . 150 Maxwell’s stress tensor . . . . . . . . . . . . . . . . . 150 F.2 Electromagnetic Radiation . . . . . . . . . . . . . . . . . . . 150 F.2.1 Relationship between the field vectors in a plane wave 150 F.2.2 The far fields from an extended source distribution . . 150 F.2.3 The far fields from an electric dipole . . . . . . . . . . 150 F.2.4 The far fields from a magnetic dipole . . . . . . . . . 151 F.2.5 The far fields from an electric quadrupole . . . . . . . 151 F.2.6 The fields from a point charge in arbitrary motion . . . 151 F.2.7 The fields from a point charge in uniform motion . . . 151 F.3 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . 152 F.3.1 Metric tensor . . . . . . . . . . . . . . . . . . . . . . 152 F.3.2 Covariant and contravariant four-vectors . . . . . . . . 152 F.3.3 Lorentz transformation of a four-vector . . . . . . . . 152 F.3.4 Invariant line element . . . . . . . . . . . . . . . . . . 152 F.3.5 Four-velocity . . . . . . . . . . . . . . . . . . . . . . 152 F.3.6 Four-momentum . . . . . . . . . . . . . . . . . . . . 153 F.3.7 Four-current density . . . . . . . . . . . . . . . . . . 153 F.3.8 Four-potential . . . . . . . . . . . . . . . . . . . . . . 153 Downloaded from http://www.plasma.uu.se/CED/Book Draft version released 13th November 2000 at 22:01

EvF.3.9153Field tensor153F.4VectorRelations154F.4.1Spherical polar coordinates154Basevectors154Directedlineelement154Solid angle element .154Directed area element154Volume element154F.4.2Vectorformulae.154General relations156Special relations157Integral relations157Bibliography148Appendices159M MathematicalMethods159M.1Scalars,VectorsandTensors159M.1.1 Vectors159Radius vectorM.1.2 Fields161161Scalar fields161Vectorfields162Tensor fields164ExampleM.1Tensorsin3Dspace167M.1.3Vectoralgebra167Scalarproduct167Example M.2 Inner products in complex vector spaceExampleM.3Scalarproduct,normandmetric inLorentz168space168Example M.4Metric ingeneral relativity169Dyadicproduct170Vector product170M.1.4Vectoranalysis170The del operator171Example M.5Thefour-del operator in Lorentz space172The gradientExample M.6 Gradients of scalar functions of relative dis-172tances in3D173ThedivergenceDraft vered13thNoveber2000at22:01.Downloadedfromhttp://www.plase/CED/Book①由由

“main” 2000/11/13 page v ￾ ￾ ￾ ￾ v F.3.9 Field tensor . . . . . . . . . . . . . . . . . . . . . . . 153 F.4 Vector Relations . . . . . . . . . . . . . . . . . . . . . . . . . 153 F.4.1 Spherical polar coordinates . . . . . . . . . . . . . . . 154 Base vectors . . . . . . . . . . . . . . . . . . . . . . 154 Directed line element . . . . . . . . . . . . . . . . . . 154 Solid angle element . . . . . . . . . . . . . . . . . . . 154 Directed area element . . . . . . . . . . . . . . . . . 154 Volume element . . . . . . . . . . . . . . . . . . . . 154 F.4.2 Vector formulae . . . . . . . . . . . . . . . . . . . . . 154 General relations . . . . . . . . . . . . . . . . . . . . 154 Special relations . . . . . . . . . . . . . . . . . . . . 156 Integral relations . . . . . . . . . . . . . . . . . . . . 157 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Appendices 148 M Mathematical Methods 159 M.1 Scalars, Vectors and Tensors . . . . . . . . . . . . . . . . . . 159 M.1.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 159 Radius vector . . . . . . . . . . . . . . . . . . . . . . 159 M.1.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Scalar fields . . . . . . . . . . . . . . . . . . . . . . . 161 Vector fields . . . . . . . . . . . . . . . . . . . . . . 161 Tensor fields . . . . . . . . . . . . . . . . . . . . . . 162 Example M.1 Tensors in 3D space . . . . . . . . . . . . 164 M.1.3 Vector algebra . . . . . . . . . . . . . . . . . . . . . 167 Scalar product . . . . . . . . . . . . . . . . . . . . . 167 Example M.2 Inner products in complex vector space . . . 167 Example M.3 Scalar product, norm and metric in Lorentz space . . . . . . . . . . . . . . . . . . . . . 168 Example M.4 Metric in general relativity . . . . . . . . . 168 Dyadic product . . . . . . . . . . . . . . . . . . . . . 169 Vector product . . . . . . . . . . . . . . . . . . . . . 170 M.1.4 Vector analysis . . . . . . . . . . . . . . . . . . . . . 170 The del operator . . . . . . . . . . . . . . . . . . . . 170 Example M.5 The four-del operator in Lorentz space . . . 171 The gradient . . . . . . . . . . . . . . . . . . . . . . 172 Example M.6 Gradients of scalar functions of relative dis￾tances in 3D . . . . . . . . . . . . . . . . . . 172 The divergence . . . . . . . . . . . . . . . . . . . . . 173 Draft version released 13th November 2000 at 22:01. Downloaded from http://www.plasma.uu.se/CED/Book

EviCONTENTS173Example M.7Divergence in 3D173The Laplacian...173Example M.8 The Laplacian and the Dirac delta+174The curl :...174Example M.9 The curl ofa gradient175Example M.10 The divergence of a curlM.2 Analytical Mechanics1761176M.2.1Lagrange's equations176M.2.2Hamilton's equations177BibliographyDownloaded fromhttp://www.plasma.uu.se/ceD/BookDraft version released 13th November 2000 at 22:01.田由①

“main” 2000/11/13 page vi ￾ ￾ ￾ ￾ vi CONTENTS Example M.7 Divergence in 3D . . . . . . . . . . . . . 173 The Laplacian . . . . . . . . . . . . . . . . . . . . . . 173 Example M.8 The Laplacian and the Dirac delta . . . . . 173 The curl . . . . . . . . . . . . . . . . . . . . . . . . . 174 Example M.9 The curl of a gradient . . . . . . . . . . . 174 Example M.10 The divergence of a curl . . . . . . . . . 175 M.2 Analytical Mechanics . . . . . . . . . . . . . . . . . . . . . . 176 M.2.1 Lagrange’s equations . . . . . . . . . . . . . . . . . . 176 M.2.2 Hamilton’s equations . . . . . . . . . . . . . . . . . . 176 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Downloaded from http://www.plasma.uu.se/CED/Book Draft version released 13th November 2000 at 22:01

EList of Figures21.1Coulomb interaction51.2Ampereinteraction1.312Moving loop in a varying B field5.152Relativemotion of two inertial systems595.2Rotation in a 2D Euclidean space5.359Minkowski diagram766.1Linear one-dimensional masschain8.198Radiation in the far zone8.2112Radiation from a moving charge in vacuum8.3114Anacceleratedchargeinvacuum8.4128Angular distribution of radiation during bremsstrahlung1298.5Location of radiation duringbremsstrahlung1338.6Radiationfromachargeincircularmotion8.7135Synchrotron radiation lobe width8.8138The perpendicular field of a moving charge8.9144Vavilov-Cerenkovcone164M.1 Surface element of a material body165M.2Tetrahedron-likevolume elementof mattervi①由D

“main” 2000/11/13 page vii ￾ ￾ ￾ ￾ List of Figures 1.1 Coulomb interaction . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Ampère interaction . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Moving loop in a varying B field . . . . . . . . . . . . . . . . 12 5.1 Relative motion of two inertial systems . . . . . . . . . . . . 52 5.2 Rotation in a 2D Euclidean space . . . . . . . . . . . . . . . . 59 5.3 Minkowski diagram . . . . . . . . . . . . . . . . . . . . . . . 59 6.1 Linear one-dimensional mass chain . . . . . . . . . . . . . . . 76 8.1 Radiation in the far zone . . . . . . . . . . . . . . . . . . . . 98 8.2 Radiation from a moving charge in vacuum . . . . . . . . . . 112 8.3 An accelerated charge in vacuum . . . . . . . . . . . . . . . . 114 8.4 Angular distribution of radiation during bremsstrahlung . . . . 128 8.5 Location of radiation during bremsstrahlung . . . . . . . . . . 129 8.6 Radiation from a charge in circular motion . . . . . . . . . . . 133 8.7 Synchrotron radiation lobe width . . . . . . . . . . . . . . . . 135 8.8 The perpendicular field of a moving charge . . . . . . . . . . 138 8.9 Vavilov-Cerenk ˇ ov cone . . . . . . . . . . . . . . . . . . . . . 144 M.1 Surface element of a material body . . . . . . . . . . . . . . . 164 M.2 Tetrahedron-like volume element of matter . . . . . . . . . . . 165 vii

EaceThis book is the result of a twenty-five year long love affair. In 1972, I tookmy first advanced course in electrodynamics at the Theoretical Physics depart-ment, Uppsala University. Shortly thereafter, I joined the research group thereand took on the task of helping my supervisor, professor PER-OLOF FRO-MAN, with the preparation of a new version of his lecture notes on ElectricityTheory. These two things opened up my eyes for the beauty and intricacy ofelectrodynamics, already at the classical level, and Ifell in love with it.Eversincethattime,Ihaveoffandonhadreasontoreturntoelectro-dynamics,bothinmy studies,researchandteaching,andthecurrentbookistheresultof myownteaching of acoursein advanced electrodynamicsatUppsala University some twenty odd years after I experienced the first en-counterwiththissubject.Thebook istheoutgrowthofthelecturenotesthatIprepared for the four-credit course Electrodynamics that was introduced in theUppsalaUniversitycurriculum in1992,tobecomethefive-creditcourseClas-sical Electrodynamics in 1997. To some extent, parts ofthese notes were basedonlecturenotesprepared,inSwedish,byBENGTLUNDBORGwhocreateddevelopedandtaught the earlier,two-creditcourse ElectromagneticRadiationatourfaculty.Intended primarily as a textbook for physics students at the advanced un-dergraduate or beginninggraduate level, Ihope thebook may be useful forresearch workerstoo.Itprovidesathoroughtreatmentofthetheoryof elec-trodynamics, mainly from a classical field theoretical point of view, and in-cludes such things as electrostatics and magnetostatics and their unificationinto electrodynamics, the electromagnetic potentials, gauge transformations,covariantformulationofclassical electrodynamics,force,momentum and en-ergy of the electromagnetic field, radiation and scattering phenomena, electro-magnetic waves and their propagation invacuum and inmedia, and covariantLagrangian/Hamiltonian field theoretical methods for electromagnetic fields,particles and interactions.The aimhas been to writeabookthat can servebothasanadvancedtext inClassicalElectrodynamicsandasapreparationforstudies in Quantum Electrodynamics and related subjectsIn an attempt to encourage participation by other scientists and students inxi0由

“main” 2000/11/13 page xi ￾ ￾ ￾ ￾ Preface This book is the result of a twenty-five year long love affair. In 1972, I took my first advanced course in electrodynamics at the Theoretical Physics depart￾ment, Uppsala University. Shortly thereafter, I joined the research group there and took on the task of helping my supervisor, professor PER-OLOF FRÖ- MAN, with the preparation of a new version of his lecture notes on Electricity Theory. These two things opened up my eyes for the beauty and intricacy of electrodynamics, already at the classical level, and I fell in love with it. Ever since that time, I have off and on had reason to return to electro￾dynamics, both in my studies, research and teaching, and the current book is the result of my own teaching of a course in advanced electrodynamics at Uppsala University some twenty odd years after I experienced the first en￾counter with this subject. The book is the outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Clas￾sical Electrodynamicsin 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced un￾dergraduate or beginning graduate level, I hope the book may be useful for research workers too. It provides a thorough treatment of the theory of elec￾trodynamics, mainly from a classical field theoretical point of view, and in￾cludes such things as electrostatics and magnetostatics and their unification into electrodynamics, the electromagnetic potentials, gauge transformations, covariant formulation of classical electrodynamics, force, momentum and en￾ergy of the electromagnetic field, radiation and scattering phenomena, electro￾magnetic waves and their propagation in vacuum and in media, and covariant Lagrangian/Hamiltonian field theoretical methods for electromagnetic fields, particles and interactions. The aim has been to write a book that can serve both as an advanced text in Classical Electrodynamics and as a preparation for studies in Quantum Electrodynamics and related subjects. In an attempt to encourage participation by other scientists and students in xi

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档