华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.4)无穷小与无穷大

§14无穷小与无穷大 、无穷小 二、无穷大 自
一、无穷小 二、无穷大 §1.4 无穷小与无穷大 首页 上页 返回 下页 结束 铃

无穷小 今无穷小的定义 如果函数fx)当x→x(或x→>∞)时的极限为零,那么称 函数八(x)为当x->x(或x->)时的无穷小 讨论: 很小很小的数是否是无穷小?0是否为无穷小? 提示 无穷小是这样的函数,在x>x(或x>∞)的过程中,极 限为零.很小很小的数,作为常数函数在自变量的任何变 化过程中,其极限就是这个常数本身 画首贝贝这回 页结束铃
首页 上页 返回 下页 结束 铃 一、无穷小 如果函数f(x)当x→x0 (或x→)时的极限为零 那么称 函数f(x)为当x→x0 (或x→)时的无穷小 ❖无穷小的定义 下页 讨论 很小很小的数是否是无穷小?0是否为无穷小? 提示 无穷小是这样的函数 在x→x0 (或x→)的过程中 极 限为零 很小很小的数 作为常数函数在自变量的任何变 化过程中 其极限就是这个常数本身

无穷小 今无穷小的定义 如果函数fx)当x→x(或x→>∞)时的极限为零,那么称 函数八(x)为当x->x(或x->)时的无穷小 例1因为im=0,所以函数一为当x>时的无穷小 x→0x 因为imn(x-1)=0,所以函数为x-1当x-1时的无穷小 因为l1=0,所以数列{}为当n→时的无穷小 n->0n+ n+1 首页上页返回 页结束铃
首页 上页 返回 下页 结束 铃 一、无穷小 例1 下页 因为 0 1 lim = x→ x 所以函数 x 1 为当 x→时的无穷小 因为lim( 1) 0 1 − = → x x 所以函数为 x−1 当 x→1 时的无穷小 因为 0 1 1 lim = n→ n+ 所以数列{ 1 1 n+ }为当 n→时的无穷小 因为 0 1 lim = x→ x 所以函数 x 1 为当 x→时的无穷小 因为lim( 1) 0 1 − = → x x 所以函数为 x−1 当 x→1 时的无穷小 因为 0 1 1 lim = n→ n+ 所以数列{ 1 1 n+ }为当 n→时的无穷小 如果函数f(x)当x→x0 (或x→)时的极限为零 那么称 函数f(x)为当x→x0 (或x→)时的无穷小 ❖无穷小的定义

、无穷小 今无穷小的定义 如果函数fx)当x→x(或x→>∞)时的极限为零,那么称 函数八(x)为当x->x(或x->)时的无穷小 今定理1(无穷小与函数极限的关系) 在自变量的同一变化过程x→>x(或x)∞)中,函数x) 具有极限4的充分必要条件是fx)=4+a,其中a是无穷小 例如,因为 1+x3=1+ 而lir 0 2x322x3 x→》∞2x3 月以m1+x31 2x32 理1明 首页上页返回 下页 结束
首页 上页 返回 下页 结束 铃 一、无穷小 如果函数f(x)当x→x0 (或x→)时的极限为零 那么称 函数f(x)为当x→x0 (或x→)时的无穷小 ❖无穷小的定义 在自变量的同一变化过程x→x0 (或x→)中 函数f(x) 具有极限A的充分必要条件是f(x)=A+a 其中a是无穷小 ❖定理1(无穷小与函数极限的关系) 定理1证明 例如 因为 3 3 3 2 1 2 1 2 1 x x x = + + 而 0 2 1 lim 3 = x→ x 所以 2 1 2 1 lim 3 3 = + → x x x 例如 因为 3 3 3 2 1 2 1 2 1 x x x = + + 而 0 2 1 lim 3 = x→ x 例如 因为 3 3 3 2 1 2 1 2 1 x x x = + + 而 0 2 1 lim 3 = x→ x

二、无穷大 今无穷大的定义 如果当x>x(或x→>∞)时,对应的函数值的绝对值x) 无限增大,那么称函数x)为x->x(或x→>∞)时的无穷大, 记为 imf(x)=∞(或limf(x)=∞) x→>x 说明: 当x)x或x→>O)时为无穷大的函数(x),按函数极限 定义来说,极限是不存在的.但为了便于叙述函数的这 性态我们也说“函数的极限是无穷大” 上页 返回 结束
首页 上页 返回 下页 结束 铃 说明: 二、 无穷大 如果当x→x0 (或x→)时 对应的函数值的绝对值|f(x)| 无限增大 那么称函数f(x)为x→x0 (或x→)时的无穷大 记为 当x→x0 (或x→)时为无穷大的函数f(x) 按函数极限 定义来说 极限是不存在的 但为了便于叙述函数的这一 性态 我们也说“函数的极限是无穷大” ❖无穷大的定义 = → lim ( ) 0 f x x x (或 = → lim f (x) x ) 下页

二、无穷大 今无穷大的定义 如果当x>x(或x→>∞)时,对应的函数值的绝对值x) 无限增大,那么称函数x)为x->x(或x→>∞)时的无穷大, 记为 imf(x)=∞(或limf(x)=∞) x→>x 讨论 无穷大的精确定义如何叙述?很大很大的数是否是 无穷大? 提示 imf(x)=∞分VM0,36>0,当0M x→>x 0 首页上页返回 结束
首页 上页 返回 下页 结束 铃 •讨论 无穷大的精确定义如何叙述?很大很大的数是否是 无穷大? •提示 = → lim ( ) 0 f x x x M0 d 0 当0|x−x0 |d 时有|f(x)|M 下页 二、 无穷大 如果当x→x0 (或x→)时 对应的函数值的绝对值|f(x)| 无限增大 那么称函数f(x)为x→x0 (或x→)时的无穷大 记为 ❖无穷大的定义 = → lim ( ) 0 f x x x (或 = → lim f (x) x )

二、无穷大 今无穷大的定义 如果当x>x(或x→>∞)时,对应的函数值的绝对值x) 无限增大,那么称函数x)为x->x(或x→>∞)时的无穷大, 记为 imf(x)=∞(或limf(x)=∞) x-xo 正无穷大与负无穷大 limf(x)=+∞,limf(x)=-∞ x→00 x→00 首页上页返回 页结束铃
首页 上页 返回 下页 结束 铃 •正无穷大与负无穷大 =+ → → lim ( ) ( ) 0 f x x x x =− → → lim ( ) ( ) 0 f x x x x 下页 二、 无穷大 如果当x→x0 (或x→)时 对应的函数值的绝对值|f(x)| 无限增大 那么称函数f(x)为x→x0 (或x→)时的无穷大 记为 ❖无穷大的定义 = → lim ( ) 0 f x x x (或 = → lim f (x) x )

例2证明im x>Ix 证因为vM0,彐6 M 当0M, 所以lm 铅直渐近线 x>1x 令铅直渐近线 如果imf(x)=∞,则称直线x=x是函数y=f(x)的图形 x→)x 的铅直渐近线 首页上页返回 页结束铃
首页 上页 返回 下页 结束 铃 ❖铅直渐近线 1 1 − = x y 1 的铅直渐近线 如果 = → lim ( ) 0 f x x x 则称直线 0 x= x 是函数 y=f(x)的图形 下页 例 例 2 2 证明 = → −1 1 lim x 1 x 证 证 因为M0 M 1 d = 当0|x−1|d 时 有 M x − | 1 1 | 所以 = → −1 1 lim x 1 x 铅直渐近线

心定理2(无穷大与无穷小之间的关系) 在自变量的同一变化过程中,如果fx)为无穷大, 则为无穷小;反之,如果fx)为无穷小,且f(x)≠0 则一为无穷大 f() 理2证明 首页上页返回 下页结束
首页 上页 返回 下页 结束 铃 ❖定理2(无穷大与无穷小之间的关系) 定理2证明 结束 在自变量的同一变化过程中 如果f(x)为无穷大 则 ( ) 1 f x 为无穷大 则 ( ) 1 f x 为无穷小 反之 如果 f(x)为无穷小 且 f(x)0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.4.2)定理2(无穷大与无穷小之间的关系).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.4.1)定理1(无穷小与函数极限的关系).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3)函数的极限.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3.4)定理4(函数极限与数列极限的关系).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3.3)心邻域.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3.2)定理3(函数极限的局部保号性).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3.1)定理2(函数极限的局部有界性).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.2)数列的极限.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.2.4)定理3(收敛数列与其子数列间的关系).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.2.3)推论.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.2.2)定理3(收敛数列的保号性).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.2.1)定理2(收敛数列的有界性).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1)映射与函数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1.5)反三角函数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1.4)函数的y=arsh表示式.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1.3)sh(x+y)=sh x.ch+ sh的证明:.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1.2)复合函数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.1.1)函数的定义域.ppt
- 北京航空航天大学:《20世纪数学的五大指导理论》电子书.pdf
- 《费马大定理》参考资料:一个困惑了世间智者358年的谜.pdf
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.5.1)极限与无穷小的关系.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.5.2)lim P(x)= lim(anx.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.5.3)定理6(复合函数的极限运算法则).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.5)极限运算法则.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.6.1)lim x=a.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.6.2)数列.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.6.3)数列有界性证明.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.6.4)无穷小.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.6)极限存在准则两个重要极限.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.7)无穷小的比较.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.8)函数的连续性与间断点.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.9.1)函数f(x)和g(x)在点x连续.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.9.2)复合而成.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.9.3)利用连续性求极限举例.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.9)连续函数的运算与初等函数的连续性.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.10.1)定理4(介值定理).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.10)闭区间上连续函数的性质.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章 习题课.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第十章(10.1)对弧长的曲线积分.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第十章(10.2.2)光滑有向曲线.ppt