中国高校课件下载中心 》 教学资源 》 大学文库

华中师范大学:《数学分析》课程PPT教学课件(讲稿)第一章(1.3.4)定理4(函数极限与数列极限的关系)

文档信息
资源类别:文库
文档格式:PPT
文档页数:1
文件大小:43.5KB
团购合买:点击进入团购
内容简介
定理4(函数极限与数列极限的关系) 如果当x→x时f(x)的极限存在,{xn}为f(x)的定义域内任一 收敛于x的数列,且满足xnx(nN+),那么相应的函数值数列 x)}必收敛,且
刷新页面文档预览

今定理4(函数极限与数列极限的关系) 如果当x>x时fx)的极限存在,{xn}为fx)的定义域内任 收敛于x0的数列,且满足xn≠x(n∈N),那么相应的函数值数列 (xn)}必收敛,且 lim f(n)=lim f(x) n→0 x→>x 证明设(x)→>4(x-x则E0,380,当0∞)故对&0,N∈N,当m>M时,有 ln-xoko 由假设,x1,≠x(n∈N.故当mN时,0<xn-xk8,从而 V(n-Ak8 即 lim f(mn=lim f(x) 上页 下页

上页 返回 下页 ❖定理4(函数极限与数列极限的关系) 如果当x→x0时f(x)的极限存在 {xn }为f(x)的定义域内任一 收敛于x0的数列 且满足xnx0 (nN+ ) 那么相应的函数值数列 {f(xn )}必收敛且 lim ( ) lim ( ) 0 f x f x x x n n→ → =  设f(x)→A(x→x0 )则0 0 当0|x−x0 | 时 有 |f(x)−A|  又因为xn→x0 (n→) 故对0 NN+  当nN时 有 |xn−x0 |  由假设 xnx0 (nN+ )故当nN时 0|x n−x 0 |  从而 |f(x n )−A|  证明 lim ( ) lim ( ) 0 f x f x x x n n→ → 即 = 

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档