《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)09 Atomic Absorption Spectrometry

Atomic Absorption Spectrometry (Chapter 9) AAS intrinsically more sensitive than AES similar atomization techniques to AES addition of radiation source high temperature for atomization necessary flame and electrothermal atomization very high temperature for excitation not necessary generally no plasma/arc/spark AAS CEM 333 page 9.1
Atomic Absorption Spectrometry (Chapter 9) • AAS intrinsically more sensitive than AES • similar atomization techniques to AES • addition of radiation source • high temperature for atomization necessary flame and electrothermal atomization • very high temperature for excitation not necessary generally no plasma/arc/spark AAS CEM 333 page 9.1

Flame AAS: simplest atomization of gas/solution/solid laminar flow burner-stable "sheet"of flame flame atomization best for reproducibility (precision)(<%) relatively insensitive-incomplete volatilization,short time in beam 700 5.0 1750 1600 1800 40 1830 1858 3.0 2.0 830 70 1.51.00.500.51.01.5 cm Burner tip Fig 9-3 Primary combustion zone-initial decomposition, molecular fragments,cool Interzonal region -hottest,most atomic fragments,used for emission/fluorescence Secondary combustion zone-cooler,conversion of atoms to stable molecules,oxides CEM 333 page 9.2
Flame AAS: • simplest atomization of gas/solution/solid • laminar flow burner - stable "sheet" of flame • flame atomization best for reproducibility (precision) (<1%) • relatively insensitive - incomplete volatilization, short time in beam Fig 9-3 Primary combustion zone - initial decomposition, molecular fragments, cool Interzonal region - hottest, most atomic fragments, used for emission/fluorescence Secondary combustion zone - cooler, conversion of atoms to stable molecules, oxides CEM 333 page 9.2

element rapidly oxidizes-largest [atom]near burner element poorly oxidizes-largest [atom]away from burner most sensitive part of flame for AAS varies with analyte 2.5 5.0 Height,cm Fig 9-4 Consequences? sensitivity varies with element must maximize burner position makes multielement detection difficult CEM 333 page 9.3
• element rapidly oxidizes - largest [atom] near burner • element poorly oxidizes - largest [atom] away from burner Þ most sensitive part of flame for AAS varies with analyte Fig 9-4 Consequences? sensitivity varies with element must maximize burner position makes multielement detection difficult CEM 333 page 9.3

Electrothermal Atomizers: entire sample atomized short time(2000-3000 C) sample spends up to 1 s in analysis volume .superior sensitivity (10-10-10-13g analyte) less reproducible (5-10 % Graphite furnace ETA(Fig 9-6) Graphite Internal gas flow furnace indow To Light beam ring External gas flow☐ Graphite tube Platform 6 external Ar gas prevents tube destruction internal Ar gas circulates gaseous analyte CEM 333 page 9.4
Electrothermal Atomizers: • entire sample atomized short time (2000-3000 °C) • sample spends up to 1 s in analysis volume • superior sensitivity (10-10-10-13 g analyte) • less reproducible (5-10 %) Graphite furnace ETA (Fig 9-6) • external Ar gas prevents tube destruction • internal Ar gas circulates gaseous analyte CEM 333 page 9.4

Three step sample preparation for graphite furnace: (1)Dry evaporation of solvents (10->100 s) (2)Ash-removal of volatile hydroxides,sulfates, carbonates (10-100 s) (3)Fire/Atomize-atomization of remaining analyte(1 s) 0.8 0.7 0.6- 0.5 0.4 Standards(μgmL) 0.2 0.3 03 0.1 0.1 0.05 0.0 Standards Sample Fig 9-7 CEM 333 page 9.5
Three step sample preparation for graphite furnace: (1) Dry - evaporation of solvents (10->100 s) (2) Ash - removal of volatile hydroxides, sulfates, carbonates (10-100 s) (3) Fire/Atomize - atomization of remaining analyte (1 s) Fig 9-7 CEM 333 page 9.5

Atomic Absorption Instrumentation: AAS should be very selective-each element has different set of energy levels and lines very narrow BUT for linear calibration curve (Beers'Law)need bandwidth of absorbing species to be broader than that of light source difficult with ordinary monochromator Solved by using very narrow line radiation sources minimize Doppler broadening ·pressure broadening lower P and T than atomizer and using resonant absorption Na emission 3p->2s at 589.6 nm used to probe Na in analyte CEM 333 page 9.6
Atomic Absorption Instrumentation: • AAS should be very selective - each element has different set of energy levels and lines very narrow • BUT for linear calibration curve (Beers' Law) need bandwidth of absorbing species to be broader than that of light source difficult with ordinary monochromator Solved by using very narrow line radiation sources • minimize Doppler broadening • pressure broadening • lower P and T than atomizer and using resonant absorption • Na emission 3p®2s at 589.6 nm used to probe Na in analyte CEM 333 page 9.6

Hollow Cathode Lamp:(Fig 9-11) Hollow Anode cathode Quartz Glass shield Ne or Ar or Pyrex at 1-5 torr window 300 V applied between anode (+)and metal cathode (- Ar ions bombard cathode and sputter cathode atoms Fraction of sputtered atoms excited,then fluoresce Cathode made of metal of interest (Na,Ca,K.Fe.) different lamp for each element restricts multielement detection ·Hollow cathode to maximize probability of redeposition on cathode restricts light direction CEM 333 page 9.7
Hollow Cathode Lamp: (Fig 9-11) • 300 V applied between anode (+) and metal cathode (-) • Ar ions bombard cathode and sputter cathode atoms • Fraction of sputtered atoms excited, then fluoresce • Cathode made of metal of interest (Na, Ca, K, Fe.) different lamp for each element restricts multielement detection • Hollow cathode to maximize probability of redeposition on cathode restricts light direction CEM 333 page 9.7

Electrodeless Discharge Lamp:(Fig 9-12) RFcoil Quartz window 00 am CEM 333 page 9.8
Electrodeless Discharge Lamp: (Fig 9-12) CEM 333 page 9.8

AAS Spectrophotometers: eadout mplifie Ebert monochromator Lamp me (a) Fig9-13(a) Signal at one wavelength often contains luminescence from interferents in flame Chemical interference: (i)reverses atomization equilibria (ii)reacts with analyte to form low volatility compound releasing agent-cations that react preferentially with interferent-Sr acts as releasing agent for Ca with phosphate protecting agent-form stable but volatile compounds with analyte(metal-EDTA formation constants) CEM 333 page 9.9
AAS Spectrophotometers: Fig 9-13(a) Signal at one wavelength often contains luminescence from interferents in flame Chemical interference: (i) reverses atomization equilibria (ii) reacts with analyte to form low volatility compound releasing agent - cations that react preferentially with interferent - Sr acts as releasing agent for Ca with phosphate protecting agent - form stable but volatile compounds with analyte (metal-EDTA formation constants) CEM 333 page 9.9

(iii))ionization M→Mt+e △E=IPM NM=NM-exp-IPM kT TABLE 92 Degree of Ionization of Metals at Flame Temperatures p=10-4atm p=10-6atm Element ev 2000K 3500K 2000K 3500K 3.893 0.01 0.86 0.11 >0.99 4.176 0.004 0.74 0.04 >0.99 K 4.339 0.003 0.66 0.03 0.99 5.138 0.0003 0.26 0.003 0.90 5.390 0.0001 0.18 .00 0.82 5.210 0.0006 0.41 0.006 0.95 Sr 5.692 0.0001 021 0.001 0.87 Ca 6.111 3×10-5 0.11 0.0003 0.67 Mg 7.644 4×10-7 0.01 4×10-6 0.09 hotter atomization means: more ionization emission from interferents CEM 333 page 9.10
(iii) ionization M « M+ + e - DE = IPM NM+ = NM × exp -IPM kT hotter atomization means: more ionization emission from interferents CEM 333 page 9.10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)08 Atomic Emission Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)07 Introduction to Atomic Optical Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)06 Infrared Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)05 Luminescence Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)04 UV-Vis(Absorption)Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)03 Optical Spectroscopy and Instrumentation.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)02 Introduction to Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)01 Instrumental Analysis.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十五章 糖类化合物 Saccharides.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十三章 杂环化合物和生物碱 Heterocyclic compounds and alkaloids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十二章 含氮和含磷有机化合物 Nitrogenous and phosphorous compounds.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十一章 取代酸 Substituted acids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十章 羧酸及其衍生物 Carboxylic Acids and Carboxylic Acid Derivatives.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第九章 醛酮醌(Aldehydes、Ketones、quinones).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第八章 醇酚醚(Alcohols、Phenols Ethers).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第七章 卤代烃 Halohydrocarbons.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第五章 旋光异构 Optical isomerism.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第四章 芳香烃 Aromatic Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第三章 不饱和烃 Unsaturated Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第二章 饱和烃(Saturated Hydrocarbon).pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)10 Introduction to Electrochemistry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)11 Potentiometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)12 Voltammetry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)13 Flow Injection Analysis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)14 Introduction to Chromatographic Separations.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)15_Gas Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)16_Liquid Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)17_Electrophoresis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)18_Mass Spectrometry.pdf
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第1节概述.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第2节高效毛细管电泳的理论基础.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第3节高效毛细管电泳仪.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第4节高效毛细管电泳分离模式.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第5节应用与进展.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第1节光分析基础与分类.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第2节原子光谱与分子光谱.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第3节光谱法仪器与光学器件.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十四章 原子吸收分光光 第1节原子发射光谱分析基本原理.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十三章 原子发射光谱分析法 第2节发射光谱分析装置与仪器.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十三章 原子发射光谱分析法 第3节等离子体发射光谱仪.ppt