《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)07 Introduction to Atomic Optical Spectroscopy

Introduction to Atomic Optical Spectroscopy (Chapter 8) Sample is atomized (atoms/ions) absorption or emission measured Energy Level Diagrams Every elements has unique set of atomic orbitals p,d,f.levels split by spin-orbit coupling Spin(s)and orbital (1)motion create magnetic fields that perturb each other (couple) if fields parallel-slightly higher energy if fields antiparallel-slightly lower energy N N VS. N Define SO coupling by J(total angular momentum) J=L+S(L=ΣlS=Σs)(positive values only) CEM 333 page 7.1
Introduction to Atomic Optical Spectroscopy (Chapter 8) Sample is atomized (atoms/ions) absorption or emission measured Energy Level Diagrams Every elements has unique set of atomic orbitals p,d,f. levels split by spin-orbit coupling Spin (s) and orbital (l) motion create magnetic fields that perturb each other (couple) if fields parallel - slightly higher energy if fields antiparallel - slightly lower energy N S N S vs. N S S N Define SO coupling by J (total angular momentum) J=L+S (L = ål S = ås) (positive values only) CEM 333 page 7.1

Example: s electron(1=0,s=+1/2or-1/2)J=0+1/2=l/2 p electron (1=1,s=+1/2 or-1/2)J=1+1/2=3/2(higher energy)or 1-1/2=1/2 (lower energy) Electronic Term Symbol 2+LLwritten as letter(S,P,D.)instead of number! Li=1s22s! L=0,S=±1/22S12 Li*=1s22p L=1,S=t1/22P32,12 Be =1s22s2 L=0,S=0 1S Be*=1s22s2p1L=1,S=1,03P2,1P0 CEM 333 page 7.2
Example: s electron (l=0, s=+1/2 or -1/2) J=0+1/2=1/2 p electron (l=1, s=+1/2 or -1/2) J=1+1/2=3/2 (higher energy) or 1-1/2=1/2 (lower energy) Electronic Term Symbol 2S+1LJ L written as letter (S, P, D.) instead of number! Li =1s2 2s1 L = 0, S = ±1 / 2 2 S1/2 Li* =1s2 2p1 L = 1, S = ±1 / 2 2 P3/2,1/2 Be =1s2 2s2 L = 0, S = 0 1 S0 Be* =1s2 2s1 2p1 L =1, S = 1, 0 3 P2 , 1 P0 CEM 333 page 7.2

3P: D lonization potential 10.0 5d d 43 4.0 8.0 4p- 号30 45 682 81 20 2.0 Mg+ 0-3 (a) (b) Fig 8-1 Similar pattern between atoms but different spacing Spectrum of ion different to atom Separations measured in electronvolts (eV) 1eV=1.602x10-19c×1VJ/C)=1.602x10-19J =96.484 kJ.mol-1 As of electrons increases,of levels increases Emission spectra become more complex Li 30 lines,Cs 645 lines,Cr 2277 lines CEM 333 page 7.3
Fig 8-1 • Similar pattern between atoms but different spacing • Spectrum of ion different to atom • Separations measured in electronvolts (eV) 1eV =1.602x10-19C´1 V(J / C) = 1.602x10-19 J = 96. 484 kJ×mol-1 • As # of electrons increases, # of levels increases Emission spectra become more complex Li 30 lines, Cs 645 lines, Cr 2277 lines CEM 333 page 7.3

Desire narrow lines for accurate identification Broadened by (i)uncertainty principle (ii)pressure broadening (iii)Doppler effect (iv)(electric and magnetic fields) Atomic line widths: (i)Uncertainty Principle: Quantum mechanical idea states must measure for some minimum time to tell two frequencies apart △t·△E≥h △t △y≥1 minin measurement difference in frequencies Shows up in lifetime of excited state if lifetime infinitely long,AE infinitely narrow ·if lifetime short,△E is broadened CEM 333 page 7.4
Desire narrow lines for accurate identification Broadened by (i) uncertainty principle (ii) pressure broadening (iii) Doppler effect (iv) (electric and magnetic fields) Atomic line widths: (i) Uncertainty Principle: Quantum mechanical idea states must measure for some minimum time to tell two frequencies apart Dt×DE ³ h Dt minimum time for measurement { × Dn minimum detectable difference in frequencies { ³1 Shows up in lifetime of excited state • if lifetime infinitely long, DE infinitely narrow • if lifetime short, DE is broadened CEM 333 page 7.4

Example Lifetime of Hg*=2x10-8 s.What is uncertainty broadening for 254 nm line? At-Av=1 Av=1= At2x10-8g=5x107z 1 V=cλ-1 Differentiating wrt to frequency dv=-cλ-2ddv≈△y and dA≈△ .=4v22_5x107s1(254x10-9m2 3x108m.s-1 =1.1x104A c sometimes called natural linewidth △入12 CEM 333 page 7.5
Example Lifetime of Hg*=2x10-8 s. What is uncertainty broadening for 254 nm line? Dt ×Dn = 1 Dn = 1 Dt = 1 2x10-8 s = 5x107 Hz n = c ×l-1 Differentiating wrt to frequency dn = -cl -2 dl dn » Dn and dl » Dl Dl = Dn×l2 c = 5x107 s -1 × 254x10-9 ( m) 2 3x108 m ×s -1 =1.1x10-4 Å sometimes called natural linewidth CEM 333 page 7.5

(ii)Pressure broadening: Collisions with atoms/molecules transfers small quantities of vibrational energy (heat)-ill-defined ground state energy Effect worse at high pressures For low pressure hollow cathode lamps(1-10 torr)10-1-10-2 A For high pressure Xe lamps(>10,000 torr)100-1000 A(turns lines into continua!) (iii)Doppler broadening Change in frequency produced by motion relative to detector In gas,broadens line symmetrically Doppler broadening increases with T ·At room T~10-2-10-3A Total linewidth typically 0.01-0.1 A CEM 333 page 7.6
(ii) Pressure broadening: Collisions with atoms/molecules transfers small quantities of vibrational energy (heat) - ill-defined ground state energy Effect worse at high pressures • For low pressure hollow cathode lamps (1-10 torr) 10-1-10-2 Å • For high pressure Xe lamps (>10,000 torr) 100-1000 Å (turns lines into continua!) (iii) Doppler broadening: Change in frequency produced by motion relative to detector In gas, broadens line symmetrically Doppler broadening increases with T • At room T ~10-2-10-3 Å Total linewidth typically 0.01-0.1 Å CEM 333 page 7.6

Other Effects of T on Atomic Spectrometry T changes of atoms in ground and excited states Boltzmann equation T△E No Po exp(kT) atoms in level transition energy E1-Eo levels at each energy Boltzmann constant 1.38x10-23 J.K-1 Important in emission measurements relying on thermal excitation Na atoms at 2500 K,only 0.02 atoms in first excited state! Less important in absorption measurements -99.98 atoms in ground state! CEM 333 page 7.7
Other Effects of T on Atomic Spectrometry: T changes # of atoms in ground and excited states Boltzmann equation N1 N0 = P1 P0 exp - DE kT æ è ö ø # atoms in level transition energy E1-E0 # levels at each energy Boltzmann constant 1.38x10-23 J·K-1 Important in emission measurements relying on thermal excitation Na atoms at 2500 K, only 0.02 % atoms in first excited state! Less important in absorption measurements - 99.98 % atoms in ground state! CEM 333 page 7.7

Methods for Atomizing and Introducing Sample Sample must be converted to atoms first TABLE 8-1 Types of Atomizers Used for Atomic Spectroscopy Type of Atomizer Typical Atomization Temperature,C Flame 1700-3150 Electrothermal vaporization 1200-3000 (ETV) Inductively coupled argon 4000-6000 plasma(ICP) Direct current argon plasma 4000-6000 (DCP) Microwave-induced argon 2000-3000 plasma(MIP) Glow discharge plasma(GD) Nonthermal Electric arc 4000-5000 Electric spark 40,000(2) CEM 333 page 7.8
Methods for Atomizing and Introducing Sample Sample must be converted to atoms first CEM 333 page 7.8

Must transfer sample to atomizer-easy for gases/solutions but difficult for solids TABLE 8-2 Methods of Sample Introduction in Atomic Spectroscopy Method Type of Sample Pneumatic nebulization Solution or slurry Ultrasonic nebulization Solution Electrothermal vaporization Solid,liquid,solution Hydride generation Solution of certain elements Direct insertion Solid,powder Laser ablation Solid,metal Spark or arc ablation Conducting solid Glow discharge sputtering Conducting solid CEM 333 page 7.9
Must transfer sample to atomizer - easy for gases/solutions but difficult for solids CEM 333 page 7.9
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)06 Infrared Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)05 Luminescence Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)04 UV-Vis(Absorption)Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)03 Optical Spectroscopy and Instrumentation.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)02 Introduction to Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)01 Instrumental Analysis.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十五章 糖类化合物 Saccharides.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十三章 杂环化合物和生物碱 Heterocyclic compounds and alkaloids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十二章 含氮和含磷有机化合物 Nitrogenous and phosphorous compounds.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十一章 取代酸 Substituted acids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十章 羧酸及其衍生物 Carboxylic Acids and Carboxylic Acid Derivatives.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第九章 醛酮醌(Aldehydes、Ketones、quinones).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第八章 醇酚醚(Alcohols、Phenols Ethers).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第七章 卤代烃 Halohydrocarbons.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第五章 旋光异构 Optical isomerism.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第四章 芳香烃 Aromatic Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第三章 不饱和烃 Unsaturated Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第二章 饱和烃(Saturated Hydrocarbon).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)绪论 Introduce Introduction.pdf
- 《无机及分析化学》课程教案讲义(打印版)10 吸光光度法.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)08 Atomic Emission Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)09 Atomic Absorption Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)10 Introduction to Electrochemistry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)11 Potentiometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)12 Voltammetry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)13 Flow Injection Analysis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)14 Introduction to Chromatographic Separations.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)15_Gas Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)16_Liquid Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)17_Electrophoresis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)18_Mass Spectrometry.pdf
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第1节概述.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第2节高效毛细管电泳的理论基础.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第3节高效毛细管电泳仪.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第4节高效毛细管电泳分离模式.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第5节应用与进展.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第1节光分析基础与分类.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第2节原子光谱与分子光谱.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第3节光谱法仪器与光学器件.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十四章 原子吸收分光光 第1节原子发射光谱分析基本原理.ppt