《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)10 Introduction to Electrochemistry

Introduction to Electrochemistry (Chapter 22) Many different electroanalytical methods: ·fast ·inexpensive ·in situ ·information about oxidation states stoichiometry rates charge transfer equilibrium constants CEM 333 page 10.1
Introduction to Electrochemistry (Chapter 22) Many different electroanalytical methods: • fast • inexpensive • in situ • information about oxidation states stoichiometry rates charge transfer equilibrium constants CEM 333 page 10.1

Electrochemical Cells: Oxidation and reduction (redox)reactions Separate species to prevent direct reaction (Fig 22-1) Voltmeter 1.100V Salt bridge Saturated KCl solutior Zn electrode Cu electrode 0.0100M 0.0100M ZnSO CuS04 solution solution Zn(s)=Zn2+(ag)+2e Cu2+(aq)+2e-=Cu(s) azm2+=0.010 acu2+=0.010 Anode Cathode Most contain· external wires (electrons carry current) ion solutions (ions carry current) interfaces or junctions All contain.complete electrical circuit conducting electrodes (metal,carbon) CEM 333 page 10.2
Electrochemical Cells: Oxidation and reduction (redox) reactions Separate species to prevent direct reaction (Fig 22-1) Most contain • external wires (electrons carry current) • ion solutions (ions carry current) • interfaces or junctions All contain • complete electrical circuit • conducting electrodes (metal, carbon) CEM 333 page 10.2

Electrons transferred at electrode surface at liquid/solid interface Potential difference (voltage)is measure of tendency to move to equilibrium Galvanic cell-cell develops spontaneous potential difference Overall: Zn(s)+Cu2+(aq)>Zn2+(aq)+Cu(s) Zn(s)→Zn2++2e Oxidation Half reactions: Cu2++2e→Cu(S) Reduction Convention: Reduction at Cathode Oxidation at Anode Galvanic cell-Zn anode (negative),Cu cathode (positive) CEM 333 page 10.3
Electrons transferred at electrode surface at liquid/solid interface Potential difference (voltage) is measure of tendency to move to equilibrium Galvanic cell - cell develops spontaneous potential difference Overall: Zn(s) + Cu2+ (aq) ® Zn2+ (aq) + Cu(s) Half reactions: Zn(s) ® Zn2+ + 2e- Oxidation Cu2+ + 2e- ® Cu(s) Reduction Convention: Reduction at Cathode Oxidation at Anode Galvanic cell - Zn anode (negative), Cu cathode (positive) CEM 333 page 10.3

Electrolytic cells-require potential difference greater than galvanic potential difference(to drive away from equilibrium) Zn(s)→Zn2++2e Oxidation Galvanic cell Cu2++2e→Cu(s) Reduction Zn2++2e→Zn(s) Reduction Electrolytic cell Cu(s)>Cu2++2e-Oxidation Electrolytic cell-Zn cathode(positive),Cu anode(negative) Many chemically reversible cells Short-Hand Cell notation: Convention: Anode on Left Zn|ZnSO(0.01 M)CuSO(0.01 M)Cu liquid-liquid interface Galvanic cell as written Electrolytic cell if reversed CEM 333 page 10.4
Electrolytic cells - require potential difference greater than galvanic potential difference (to drive away from equilibrium) Zn(s) ® Zn2+ + 2e- Oxidation Cu2+ + 2e- ® Cu(s) Reduction Galvanic cell Zn2+ + 2e- ® Zn(s) Reduction Cu(s) ® Cu2+ + 2e- Oxidation Electrolytic cell Electrolytic cell - Zn cathode (positive), Cu anode (negative) Many chemically reversible cells Short-Hand Cell notation: Convention: Anode on Left Zn|ZnSO4 (0.01 M)||CuSO4 (0.01 M)|Cu liquid-liquid interface Galvanic cell as written Electrolytic cell if reversed CEM 333 page 10.4

Not all cells have liquid-liquid junctions(Fig 22-3) H2 10 P=1.00atm) 0.01MHC1 saturated with AgCl Ptelectrode(anode Hz(aq)-H+(aq)+e Solid AgCl AgCl(s)->Ag(aq)+CI(aq) H2(g)→H2(aq) Cathode:Ag(aq)+e->Ag(s) Anode: H2(aq)→2H(aq)+2e Overall:2AgCl(s)+H(g)>2Ag(s)+2H++2CI- Pt,H2(p=1atm)H(0.01 M),CI(0.01 M),AgCI(sat'd)Ag CEM 333 page 10.5
Not all cells have liquid-liquid junctions (Fig 22-3) AgCl(s) ® Ag+ (aq) + Cl- (aq) H2 (g) ® H2 (aq) Cathode: Ag + (aq) + e - ® Ag(s) Anode: H2 (aq) ® 2H+ (aq) + 2e - Overall: 2AgCl(s) + H2 (g) ® 2Ag(s) + 2H+ + 2ClPt,H 2 (p = 1atm)|H + (0.01 M),Cl - (0.01 M),AgCl (sat'd)|Ag CEM 333 page 10.5

Electrode Potentials: Cell potential is difference between anode and cathode potential Ecell =Ecathode-Eanode when half-reactions written as reductions Example: 2AgCl(s)+H2(g)>2Ag(s)+2H++2CI- 2AgCI(s)+2e>2Ag(s)+2CI- 2Ht+2e←→H2(g) electrons on left Galvanic cell Ecell=Ecathode-Eanode=+0.46 V Can't measure potential on each electrode independently -only differences CEM 333 page 10.6
Electrode Potentials: • Cell potential is difference between anode and cathode potential Ecell = Ecathode - Eanode when half-reactions written as reductions Example: 2AgCl(s) + H2 (g) ® 2Ag(s) + 2H+ + 2Cl- 2AgCl(s) + 2e- « 2Ag(s) + 2Cl- 2H+ + 2e- « H2 (g) electrons on left Galvanic cell Ecell=Ecathode-Eanode=+0.46 V Can't measure potential on each electrode independently - only differences CEM 333 page 10.6

Standard reference electrode is usually standard hydrogen electrode (SHE) Pt,H2(p=1.00 atm)H(a=1.00 M)Il. Fig 22-5 Voltmeter e- 0.337V Salt bridge H2 gas 0 PH2=1.00 atm aH+=1.00 aw2+=1.00 CEM 333 page 10.7
Standard reference electrode is usually standard hydrogen electrode (SHE) Pt,H2 (p =1.00 atm)|H+ (aH + = 1.00 M)||. Fig 22-5 CEM 333 page 10.7

SHE: assigned 0.000 V can be anode or cathode Pt does not take part in reaction Pt electrode coated with fine particles(Pt black)to provide large surface area cumbersome to operate Alternative reference electrodes: ·Ag/AgCl electrode AgCI(s)+e←CI-+Ag(s) Ecell =+0.20 V vs.SHE ·Calomel electrode Hg2Cl,(s)+2e←→2C1-+2Hg) Ecell =+0.24 V vs.SHE CEM 333 page 10.8
SHE: • assigned 0.000 V • can be anode or cathode • Pt does not take part in reaction • Pt electrode coated with fine particles (Pt black) to provide large surface area • cumbersome to operate Alternative reference electrodes: • Ag/AgCl electrode AgCl(s) + e - « Cl- + Ag(s) Ecell = +0.20 V vs. SHE • Calomel electrode Hg2Cl2 (s) + 2e- « 2Cl - + 2Hg(l) Ecell = +0.24 V vs.SHE CEM 333 page 10.8

Electrode and Standard Electrode Potentials(E and E0): How do we know which way reaction will go spontaneously? Use electrode potentials,E(potential of electrode versus SHE)to find Eanode and Ecathode.Then find Ecell. But electrode potential varies with activity of ion(appendix 2) activity activity coefficient ax=Yx[X] concentration Yx varies with presence of other ions (ionic strength) u=Xzx×2+Yz2+ concentration charge Note:activity of pure liquid or solid in excess=1.00 Note:use pressure (atm)for gases If a=1.00 M.the electrode potential,E,becomes standard electrode potential,E0 CEM 333 page 10.9
Electrode and Standard Electrode Potentials (E and E0): How do we know which way reaction will go spontaneously? Use electrode potentials, E (potential of electrode versus SHE) to find Eanode and Ecathode. Then find Ecell. But electrode potential varies with activity of ion (appendix 2) activity activity coefficient aX = g X ×[X] concentration gX varies with presence of other ions (ionic strength) m = 1 2 [X]Z X 2 +[Y]ZY 2 ( +.) concentration charge Note: activity of pure liquid or solid in excess=1.00 Note: use pressure (atm) for gases If a=1.00 M, the electrode potential, E, becomes standard electrode potential, E0 CEM 333 page 10.9

Appendix 3: Cu2++2e←Cu(S) E0=+0.337V 2H++2e←→H2(g)) E0=+0.000V Cd2++2e->Cd(s) E0=-0.403V Zn2++2e>Zn(s) E0=-0.763V Cell containing Cu/Cu2+and Cd/Cd2+ called couple (1)Cu2++2e->Cu spontaneously forward Cd2++2e->Cd spontaneously backward(Cd->Cd2++2e-) (2)e-flow towards Cu electrode (cathode/positive electrode) e-flow away from Cd electrode(anode/negative electrode) (3)Cu2+good electron acceptor (oxidizing agent) Cd good electron donor (reducing agent) The most positive E or E0 spontaneously forward forming cathode CEM 333 page 10.10
Appendix 3: Cu2+ + 2e- « Cu(s) E 0 = +0.337 V 2H+ + 2e- « H2 (g) E 0 = +0.000 V Cd2+ + 2e- « Cd(s) E 0 = -0.403 V Zn2+ + 2e- « Zn(s) E 0 = -0.763 V Cell containing Cu/Cu2+ and Cd/Cd2+ called couple (1) Cu2++2e-®Cu spontaneously forward Cd2++2e-®Cd spontaneously backward (Cd®Cd2++2e-) (2) e- flow towards Cu electrode (cathode/positive electrode) e- flow away from Cd electrode (anode/negative electrode) (3) Cu2+ good electron acceptor (oxidizing agent) Cd good electron donor (reducing agent) The most positive E or E0 spontaneously forward forming cathode CEM 333 page 10.10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)09 Atomic Absorption Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)08 Atomic Emission Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)07 Introduction to Atomic Optical Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)06 Infrared Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)05 Luminescence Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)04 UV-Vis(Absorption)Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)03 Optical Spectroscopy and Instrumentation.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)02 Introduction to Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)01 Instrumental Analysis.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十五章 糖类化合物 Saccharides.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十三章 杂环化合物和生物碱 Heterocyclic compounds and alkaloids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十二章 含氮和含磷有机化合物 Nitrogenous and phosphorous compounds.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十一章 取代酸 Substituted acids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十章 羧酸及其衍生物 Carboxylic Acids and Carboxylic Acid Derivatives.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第九章 醛酮醌(Aldehydes、Ketones、quinones).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第八章 醇酚醚(Alcohols、Phenols Ethers).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第七章 卤代烃 Halohydrocarbons.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第五章 旋光异构 Optical isomerism.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第四章 芳香烃 Aromatic Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第三章 不饱和烃 Unsaturated Hydrocarbon.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)11 Potentiometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)12 Voltammetry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)13 Flow Injection Analysis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)14 Introduction to Chromatographic Separations.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)15_Gas Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)16_Liquid Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)17_Electrophoresis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)18_Mass Spectrometry.pdf
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第1节概述.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第2节高效毛细管电泳的理论基础.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第3节高效毛细管电泳仪.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第4节高效毛细管电泳分离模式.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第5节应用与进展.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第1节光分析基础与分类.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第2节原子光谱与分子光谱.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十二章 光分析法导论 第3节光谱法仪器与光学器件.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十四章 原子吸收分光光 第1节原子发射光谱分析基本原理.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十三章 原子发射光谱分析法 第2节发射光谱分析装置与仪器.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十三章 原子发射光谱分析法 第3节等离子体发射光谱仪.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十三章 原子发射光谱分析法 第4节定性、定量分析方法.ppt