《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)02 Introduction to Spectroscopy

Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation(wave)description: Wavelength入 Velocity v Amplitude A Time t or Distance x Period p time for 1 A to pass fixed point 1 Frequency v of passing per sv= p 1 Wavenumber v #of入per cm Velocity v Distance point on wave travels per second V=V入 In a vacuum:Vvacuum=c =2.99782x108m/s A set of waves with identical (a)fregency (b)phase are called coherent. CEM 333 page 2.1
Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Electric Field Strength Time t or Distance x Amplitude A Velocity v Wavelength l 0 Period p time for 1 l to pass fixed point Frequency n # of l passing per s n = 1 p æ è ç ö ø ÷ Wavenumber n # of l per cm n = 1 l æ è ö ø Velocity v Distance point on wave travels per second In a vacuum: v = n ×l vvacuum = c = 2.99782x108 m / s A set of waves with identical (a) freqency (b) phase are called coherent . CEM 333 page 2.1

Frequency is always fixed but velocity can vary! Waves slow down in medium(gas,liquid,solid)so v<c V=Vλ Implies A decreases in medium Refractive index1.00 Equation for Wave E=Asin(ot+Φ)where o=2πv electric field frequency amplitude phase angular frequency time Wave description explains certain EM radiation phenomena: transmission reflection and refraction diffraction interference scattering polarization CEM 333 page 2.2
Frequency is always fixed but velocity can vary! Waves slow down in medium (gas, liquid, solid) so v<c v = n ×l Implies l decreases in medium Refractive index h = c v ³ 1.00 Equation for Wave E = Asin(wt + f) where w = 2pn electric field frequency amplitude phase angular frequency time Wave description explains certain EM radiation phenomena: transmission reflection and refraction diffraction interference scattering polarization CEM 333 page 2.2

Particle Description of Light: Based on quantum mechanics Energy of EM photon:E=huhe Planck's Constant=6.626x10-34 J.s Postulates of QM 1.Atoms,ions and molecules exist in discrete energy states only Eo=ground state E1,E2,E3.excited states Excitation can be electronic,vibrational or rotational Energy levels for atoms,ions or molecules different. Measuring energy levels gives means of identification- spectroscopy When an atom,ion or molecule changes energy state,it absorbs or emits energy equal to the energy difference AE=E1-Eo 3.The wavelength or frequency of radiation absorbed or emitted during a transition proportional to AE h.c AE=h.v= CEM 333 page 2.3
Particle Description of Light: Based on quantum mechanics Energy of EM photon: E = hu = hc l Planck's Constant=6.626x10-34 J·s Postulates of QM: 1. Atoms, ions and molecules exist in discrete energy states only E0 = ground state E1 , E2 , E3 . = excited states Excitation can be electronic, vibrational or rotational Energy levels for atoms, ions or molecules different. Measuring energy levels gives means of identification - spectroscopy 2. When an atom, ion or molecule changes energy state, it absorbs or emits energy equal to the energy difference DE = E1 - E0 3. The wavelength or frequency of radiation absorbed or emitted during a transition proportional to DE DE = h ×n = h ×c l CEM 333 page 2.3

Emission Spectra Plot of emission intensity vs.v or A called emission spectrum Atom: Atomic Atomic Excitation Emission Lifetime~1-100 ns △E=362.5kJ/mol Energy △E=202.8kJ/mol v=9.08x10Hz v=5.08x10Hz \E0 =590nm 入=330nm line emission spectra Inner shell (core)electrons (1s<-2p)-x-rays photons Outer shell (valence)electrons(3d-4p)-UV/vis photons Molecule: Molecular Molecular Excitation 七m1ss1on R10 Energy Ro V3 V2 Lifetime V11-1006 Band 1 Band 2 vibrational and rotational transitions-band emission spectra CEM 333 page 2.4
Emission Spectra Plot of emission intensity vs. n or l called emission spectrum Atom: E 0 E 1 E 2 DE=202.8 kJ/mol n=5.08x10 Hz l=590 nm 14 DE=362.5 kJ/mol n=9.08x10 Hz l=330 nm 14 Energy Atomic Excitation Atomic Emission Lifetime~1-100 ns line emission spectra Inner shell (core) electrons (1s¬2p) - x-rays photons Outer shell (valence) electrons (3d¬4p) - UV/vis photons Molecule: E 0 E 1 E 2 Energy Molecular Excitation Molecular Emission V0 V1 V2 V3 R0 R10 Band 1 Band 2 Lifetime 1-100 fs vibrational and rotational transitions - band emission spectra CEM 333 page 2.4

Emission spectrum of brine(Fig.6-15): Bands 22588 MgOH bands 0050- E'LIS O3W- 02s0aN- Continuum 325 350 325 400 450 500 550600 Wavelength,nm CEM 333 page 2.5
Emission spectrum of brine (Fig. 6-15): CEM 333 page 2.5

Ballpark Energy Level Spacings AE (Electronic)>100 MJ/mol (x-ray)to <100 kJ/mol (UV-vis) AE (Vibrational)<1 to <100 kJ/mol (IR) AE (Rotational)10-100 J/mol (microwave) Continuum Spectra: Very broad band spectra in emission from solids Produced by blackbody radiation -thermal excitation and relaxation of many vibrational (and rotational)levels. Blackbody Spectrum (Fig 6-18) 104 Xenon arc Carbon arc 103 Tungsten lamp Nernst glower -6000K 4000K 3000K / 2000K 50010001500200025003000 Wavelength,nm CEM 333 page 2.6
Ballpark Energy Level Spacings: DE (Electronic) >100 MJ/mol (x-ray) to <100 kJ/mol (UV-vis) DE (Vibrational) <1 to <100 kJ/mol (IR) DE (Rotational) 10-100 J/mol (microwave) Continuum Spectra: Very broad band spectra in emission from solids Produced by blackbody radiation - thermal excitation and relaxation of many vibrational (and rotational) levels. Blackbody Spectrum (Fig 6-18) CEM 333 page 2.6

Absorption Spectra Plot of Absorbance vs.v or called absorption spectrum Just as in emisson spectra an atom,ion or molecule can only absorb radiation if energy matches separation between two energy states Atoms: No vibrational or rotational energy levels-sharp line spectra with few features For example Na 3s->3p 589.0,589.6 nm (yellow) Na3s-→5p285.0,285.1nm(UV) Visible enough energy for valence (bonding)excitations UV and x-ray enough energy for core(inner)excitations Molecules: Electronic,vibrational and rotational energy levels-broad band spectra with many features AE=AEelectronie+AEvibrational +AErotational For each electronic state-many vibrational states For each vibrational state -many rotational states -→many features Absorption spectra affected by (1)number of atoms in molecule (2)solvent molecules more features blurred features CEM 333 page 2.7
Absorption Spectra Plot of Absorbance vs. n or l called absorption spectrum Just as in emisson spectra an atom, ion or molecule can only absorb radiation if energy matches separation between two energy states Atoms: No vibrational or rotational energy levels - sharp line spectra with few features For example: Na 3s®3p 589.0, 589.6 nm (yellow) Na 3s®5p 285.0, 285.1 nm (UV) Visible enough energy for valence (bonding) excitations UV and x-ray enough energy for core (inner) excitations Molecules: Electronic, vibrational and rotational energy levels - broad band spectra with many features DE = DEelectronic + DEvibrational + DErotational For each electronic state - many vibrational states For each vibrational state - many rotational states ®many features Absorption spectra affected by (1) number of atoms in molecule (2) solvent molecules more features blurred features CEM 333 page 2.7

Effect of Chemical State(Fig 6-19): (a)Na vapor 0 588 589 590 (b)Benzene vapo (c)Benzene in hexane (d)Biphenyl in hexane 220 260 300 340 Wavelength,nm CEM 333 page 2.8
Effect of Chemical State (Fig 6-19): CEM 333 page 2.8

Relaxation Processes: Lifetime of excited state is short (fs->ms)-relaxational processes return excited species to ground state Nonradiative relaxation many small collisional relaxations tiny temperature rise of surrounding species Radiative relaxation (emission) fluorescence (10-5 s) Resonance fluorescence produces emission at same energy/frequency/wavelength as absorption common for atoms(no V or R levels) Non-resonance fluorescence produces emission at lower energy (lower frequency/longer wavelength)than absorption (Stokes shift) common in molecules -vibrational relaxation occurs before fluorescence Phosphorescence Produced by long-lived electronic state (up to hours) CEM 333 page 2.9
Relaxation Processes: Lifetime of excited state is short (fs®ms) - relaxational processes return excited species to ground state Nonradiative relaxation many small collisional relaxations tiny temperature rise of surrounding species Radiative relaxation (emission) fluorescence (10-5 s) Resonance fluorescence produces emission at same energy/frequency/wavelength as absorption common for atoms (no V or R levels) Non-resonance fluorescence produces emission at lower energy (lower frequency/longer wavelength) than absorption (Stokes shift) common in molecules - vibrational relaxation occurs before fluorescence Phosphorescence Produced by long-lived electronic state (up to hours) CEM 333 page 2.9

Absorption Nonradiative Fluorescence relaxation E2 UV Vis R Eo Excitation methods: (① EM radiation (ii) spark/discharge/arc Gii) particle bombardment (electrons,ions. (iv) chemiluminescence (exothermic chemical reaction generates excited products) CEM 333 page 2.10
IR Vis UV Absorption Nonradiative relaxation Fluorescence Resonance Non-resonance E 2 E 1 E 0 Excitation methods: (i) EM radiation (ii) spark/discharge/arc (iii) particle bombardment (electrons, ions. ) (iv) chemiluminescence (exothermic chemical reaction generates excited products) CEM 333 page 2.10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)01 Instrumental Analysis.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十五章 糖类化合物 Saccharides.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十三章 杂环化合物和生物碱 Heterocyclic compounds and alkaloids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十二章 含氮和含磷有机化合物 Nitrogenous and phosphorous compounds.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十一章 取代酸 Substituted acids.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第十章 羧酸及其衍生物 Carboxylic Acids and Carboxylic Acid Derivatives.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第九章 醛酮醌(Aldehydes、Ketones、quinones).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第八章 醇酚醚(Alcohols、Phenols Ethers).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第七章 卤代烃 Halohydrocarbons.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第五章 旋光异构 Optical isomerism.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第四章 芳香烃 Aromatic Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第三章 不饱和烃 Unsaturated Hydrocarbon.pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)第二章 饱和烃(Saturated Hydrocarbon).pdf
- 山东农业大学:《有机化学》课程教学资源(课件讲稿)绪论 Introduce Introduction.pdf
- 《无机及分析化学》课程教案讲义(打印版)10 吸光光度法.pdf
- 《无机及分析化学》课程教案讲义(打印版)09 氧化还原平衡与氧化还原滴定法.pdf
- 《无机及分析化学》课程教案讲义(打印版)08 配位平衡与配位滴定法.pdf
- 《无机及分析化学》课程教案讲义(打印版)07 沉淀溶解平衡和沉淀分析法.pdf
- 《无机及分析化学》课程教案讲义(打印版)06 酸碱平衡和酸碱滴定法.pdf
- 《无机及分析化学》课程教案讲义(打印版)05 化学分析.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)03 Optical Spectroscopy and Instrumentation.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)04 UV-Vis(Absorption)Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)05 Luminescence Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)06 Infrared Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)07 Introduction to Atomic Optical Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)08 Atomic Emission Spectroscopy.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)09 Atomic Absorption Spectrometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)10 Introduction to Electrochemistry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)11 Potentiometry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)12 Voltammetry.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)13 Flow Injection Analysis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)14 Introduction to Chromatographic Separations.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)15_Gas Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)16_Liquid Chromatography.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)17_Electrophoresis.pdf
- 《仪器分析 Instrumental Analysis》课程教学资源(教材讲义)18_Mass Spectrometry.pdf
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第1节概述.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第2节高效毛细管电泳的理论基础.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第3节高效毛细管电泳仪.ppt
- 《仪器分析》课程教学讲义(PPT课件)第十一章 高效毛细管电泳分析 第4节高效毛细管电泳分离模式.ppt