太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.7)空间曲线及其方程

ut ed 第七节空间曲线丞其方程 空间曲线的一般方程 二、空间曲线的参数方程 、空间曲线在坐标面上的投影
第七节 空间曲线及其方程 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影

空间曲线的一般方程 空间曲线C可看作空间两曲面的交线 ∫F(x,y,2)=0 G( x,y,z)=0 空间曲线的一般方程 S 特点:曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 不能同时满足两个方程 上一页下一页返回
= = ( , , ) 0 ( , , ) 0 G x y z F x y z 空间曲线的一般方程 曲线上的点都满足 方程,满足方程的点都在 曲线上,不在曲线上的点 不能同时满足两个方程. x o z y S1 S2 C 空间曲线C可看作空间两曲面的交线. 特点: 一、空间曲线的一般方程

x2+y2=1 例1方程组 表示怎样的曲线? 2x+3y+3z=6 解x2+y2=1表示圆柱面, 2x+3y+3z=6表示平面, r ty= 2x+3y+3z=6 交线为椭圆 上一页下一页返回
例1 方程组 表示怎样的曲线? + + = + = 2 3 3 6 1 2 2 x y z x y 解 1 2 2 x + y = 表示圆柱面, 2x + 3y + 3z = 6 表示平面, + + = + = 2 3 3 6 1 2 2 x y z x y 交线为椭圆

a 例2方程组 2+y2a2表示怎样的曲线? 解 2x2-y 上半球面, 2 (x-)2+y 圆柱面, 交线如图 上一页下一页返回
例2 方程组 表示怎样的曲线? − + = = − − 4 ) 2 ( 2 2 2 2 2 2 a y a x z a x y 解 2 2 2 z = a − x − y 上半球面, 4 ) 2 ( 2 2 2 a y a x − + = 圆柱面, 交线如图

二、空间曲线的参数方程 xX三x y=y)空间曲线的参数方程 z=2() 当给定t=1时,就得到曲线上的一个点 (x1,y1,z1),随着参数的变化可得到曲线上的全 部点 上一页下一页返回
= = = ( ) ( ) ( ) z z t y y t x x t 当给定 1 t = t 时,就得到曲线上的一个点 ( , , ) 1 1 1 x y z ,随着参数的变化可得到曲线上的全 部点. 空间曲线的参数方程 二、空间曲线的参数方程

例3如果空间一点M在圆柱面x2+y2=a2上以 角速度绕轴旋转,同时又以线速度沿平行 轴的正方向上升(其中、v都是常数),那么点 M构成的图形叫做螺旋线.试建立其参数方程. 解 取时间t为参数,动点从A点出 发,经过间,运动到M点 M在xOy面的投影M(x,p,0) x=acos at y=asina Z= vt xA4My螺旋线的参数方程 上一页下一页返回
动点从A点出 发,经过t时间,运动到M点 例 3 如果空间一点M 在圆柱面 2 2 2 x + y = a 上以 角速度 绕z 轴旋转,同时又以线速度v 沿平行于z 轴的正方向上升(其中 、v 都是常数),那么点 M 构成的图形叫做螺旋线.试建立其参数方程. A • M M M 在xoy面的投影M(x, y,0) x = acost y = asint z = vt t 螺旋线的参数方程 取时间t为参数, 解 x y z o

螺旋线的参数方程还可以写为 x=acos e y=asin 6 z=b6 (6=@t, b 螺旋线的重要性质: 上升的高度与转过的角度成正比 即6:6→6+a,z:b→b+ba, a=2π,上升的高度h=2b兀螺距 上一页下一页返回
螺旋线的参数方程还可以写为 = = = z b y a x a sin cos ( , ) v = t b = 螺旋线的重要性质: : , 0 → 0 + : , z b 0 → b 0 + b 上升的高度与转过的角度成正比. 即 = 2, 上升的高度 h = 2b 螺距

三、空间曲线在坐标面上的投影 设空间曲线的一般方程: F(x,y,z)=0 G(x,y,x)=0 消去变量《后得:H(x,y)=0 曲线关于xoy的投影柱面 投影柱面的特征 以此空间曲线为准线,垂直于所投影的坐标面 上一页下一页返回
= = ( , , ) 0 ( , , ) 0 G x y z F x y z 消去变量z后得: H(x, y) = 0 曲线关于 xoy 的投影柱面 设空间曲线的一般方程: 以此空间曲线为准线,垂直于所投影的坐标面. 投影柱面的特征: 三、空间曲线在坐标面上的投影

如图:投影曲线的研究过程 空间曲线 投影柱面 投影曲线 上一页下一页返回
如图:投影曲线的研究过程. 空间曲线 投影柱面 投影曲线

空间曲线在xOy面上的投影曲线 H(x,y)=0 类似地:可定义空间曲线在其他坐标面上的投影 yOz面上的投影曲线,xOz面上的投影曲线, ∫R(y,z)=0 ∫T(x,z)=0 x=0 y=0 上一页下一页返回
类似地:可定义空间曲线在其他坐标面上的投影 = = 0 ( , ) 0 x R y z = = 0 ( , ) 0 y T x z yoz 面上的投影曲线, xoz 面上的投影曲线, = = 0 ( , ) 0 z H x y 空间曲线在 xoy 面上的投影曲线
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.6)曲面及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.5)空间直线及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.4)平面及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.3)数量积 向量积 混合积.ppt
- 《化学分析》课程教学资源(PPT电子课件讲稿)第七章 氧化还原滴定法(常用的氧化还原滴定方法、氧化还原滴定结果的计算).ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.2)向量及其线性运算.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.1)空间直角坐标系.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用(6.3)功、水和压力.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用(6.2)定积分在几何上的应用.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用 定积分的元素法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.5)广义积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.4)定积分的分部积分法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.3)定积分的换元积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.2)微积分基本定理.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.1)定积分的概念.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第四章 不定积分(4.3)几类特殊函数的积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第四章 不定积分(4.2)不定积分的计算.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第四章 不定积分(4.1)不定积分的概念与性质.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)曲率.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)函数图形的描绘.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.1)多元函数的极限及连续性.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.2)偏导数.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.3)全微分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.4)多元复合函数求导法则.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.5)隐函数的求导法则.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.6)方向导数与梯度.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.7)偏导数在几何上的应用.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.8)多元函数的极值与最值.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.1)二重积分的概念及性质.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.2)二重积分的计算法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.3)三重积分的概念及其直角坐标计算法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.4)利用柱面坐标和球面坐标计算三重积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.5)重积分的应用.ppt
- Fluent经典问题答疑.doc
- 湖北工业大学:《高数真题》2007年招收硕士学位研究生试卷(无答案).doc
- 福州大学数学与计算机科学学院:《Mathematica课件》mathematica-超级教程(张碧霞).pdf
- 福州大学数学与计算机科学学院:《Mathematica课件》第二讲 用Mathematica进行函数计算和解微积分(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第三讲 用Mathematica解方程(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第四讲 用Mathematica画函数图形(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第一讲 Mathematica软件环境介绍(张碧霞).ppt