太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.4)多元复合函数求导法则

ut ed 第四节多元复合函数求导法则 链式法购 全微分形式不变性
第四节 多元复合函数求导法则 一 链式法则 二 全微分形式不变性

、链式法贝 复合函数的中间变量为一元函数的情形 定理1如果函数u=q(t及ν=y(t)都在点t可 导,函数=f(对应点(M,v)具有连续偏导 数,则复合函数z=f[q(t)2v(t)在对应点t可 导,且其导数可用下列公式计算: dz oz du a di dt au dt av dt 证设t获得增量△t 则△=q(t+)-q(t),Aν=v(t+△n)-y(t) 上一页下一页回
1 复合函数的中间变量为一元函数的情形 定理 1 如果函数 及 都在点 可 导,函数 在对应点 具有连续偏导 数,则复合函数 在对应点 可 导,且其导数可用下列公式计算: dt dv v z dt du u z dt dz + = u = (t) v = (t) t z = f (u,v) (u,v) z = f [(t), (t)] t 证 设 t 获得增量 t 则u =(t + t) −(t), v = (t + t) − (t) 一、链式法则

由于函数x=∫(u,v)在点(2v)连续偏导数 z △+y+E,A+a△ au av 当A→>0,△卩→>0时,1→>0,62>0 △z△uOz△ν 41t △ E At du at dy△t△t2△t 当M→>O时,A→>0,Ap→0 △dle △dh △tdt 上一页下一页返回
, 1 2 v u v v z u u z z + + + = t v t u t v v z t u u z t z + + + = 1 2 , dt du t u → , dt dv t v → 由于函数 z = f (u,v) 在点 (u,v) 有连续偏导数 当 u →0,v →0 时, 1 → 0, 2 → 0 当 t → 0 时, u →0,v →0

az △, Oz du o dy 上定理的结论可推广到中间变量多于两个的情况. dz dt au dt av dt Ow dt 以上公式中的导数称为全导数 at 上一页下一页返回
lim . 0 dt dv v z dt du u z t z dt dz t + = = → 上定理的结论可推广到中间变量多于两个的情况. 如 dt dw w z dt dv v z dt du u z dt dz + + = u v w z t 以上公式中的导数 称为全导数. dt dz

2复合函数的中间变量为多元函数的情形 z=∫[p(x,y)2v(x,y)] 定理2 如果=q(x,y)及=y(x,y都在点(x,y 具有对和y的偏导数且函数z=f(n,v)在对应 点(2ν)具有连续偏导数,则复合函数 z=∫[0(x,y)y(x,)在对应点x,y)的两个偏 导数存在,且可用下列公式计算 ozoz au az av + ax au ax"oν ax Oy au Oy Ov ay 上一页下一页回
z = f[(x, y), (x, y)]. 2 复合函数的中间变量为多元函数的情形 定理2 , x v v z x u u z x z + = y v v z y u u z y z + = 如果 及 都在点 具有对 和 的偏导数且函数 在对应 点 具有连续偏导数,则复合函数 在对应点 的两个偏 导数存在,且可用下列公式计算 u = (x, y) v = (x, y) (x, y) x y z = f (u,v) (u,v) z = f [(x, y), (x, y)] (x, y)

链式法则如图示 Oz o Ou oz av ax au ax ay ax oz oz Ou az dv dy ou dy Ov ay 上一页下一页返回
u v x z y 链式法则如图示 x v v z x u u z x z + = y v v z y u u z y z + =

类似地再推广,设=φp(x,y)、ν=v(x,y) W=(x,y)都在点x,p具有对和y偏导数,复合 函数z=f[p(x,y)y(x,y)O(x,y)在对应点(x,y 两个偏导数存在,且可用下列公式计算 ax au ax ay ax ow ax z=v ay au ay av ay ow dy 上一页下一页返回
z w v u y x y w w z y v v z y u u z y z + + = x w w z x v v z x u u z x z + + = 类似地再推广,设 、 、 都在点 具有对 和 的偏导数,复合 函数 在对应点 两个偏导数存在,且可用下列公式计算 u = (x, y) v = (x, y) w =(x, y) (x, y) x y z = f[(x, y), (x, y),(x, y)] (x, y)

特殊地z=∫(u2x,y)其中W=y(x,y) 即z=∫[y(x,y),x,y],令V=x,W=y ay O 0 ax au0,Ow az af au. of azof0x」似 别 ax au ax ax Oy ou ay 类 两者的区别 把z=∫(u,x,y 复合函数z=f(x,y,x,y中的u及y看作不 中的y看作不变而对的偏导数变而对x的偏导数 上一页下一页返回
, x f x u u f x z + = . y f y u u f y z + = 即 z = f[(x, y), x, y], 令 v = x, w = y, =1, x v = 0, x w = 0, y v =1. y w 把复合函数 z = f [ (x, y), x, y] 中的y看作不变而对x的偏导数 把 z = f (u, x, y) 中的u及 y 看作不 变而对x的偏导数 两者的区别 区 别 类 似 特殊地 z = f (u, x, y) 其中 u = (x, y)

例1设z=e“sinν,而l=x,v=x+y az a 求和 解 az az. au az av ax au ax ay ax esinv.y+e" cosv]-=e(sin v+cos v) az a au az av Oy au ay av =e"sinv:x+e"cosp·le“( Rainy+cosv) 上一页下一页返回
解 = e sinv y + e cos v 1 u u e ( ysinv cos v), u = + = e sinv x + e cos v 1 u u e (xsinv cos v). u = + 例 1 设 , 而 , 求 和 . xz yz z e v u = sin u = xy v = x + y xv vz xu uz xz + = yv vz yu uz yz + =

例2设了≡Wv+sint,而u=e,ν≡cost, 求全导数 解dOz.m0z.cDz dt au dt av dt at =ve -usint+ cos t =e cost-e sint+ cos t e(cost-sint)+ cost. 上一页下一页返回
例 2 设z = uv + sint,而 t u = e ,v = cost, 求全导数 dt dz . 解 t z dt dv v z dt du u z dt dz + + = ve u t t t = − sin + cos e t e t t t t = cos − sin + cos e (cost sin t) cost. t = − +
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.3)全微分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.2)偏导数.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.1)多元函数的极限及连续性.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.7)空间曲线及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.6)曲面及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.5)空间直线及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.4)平面及其方程.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.3)数量积 向量积 混合积.ppt
- 《化学分析》课程教学资源(PPT电子课件讲稿)第七章 氧化还原滴定法(常用的氧化还原滴定方法、氧化还原滴定结果的计算).ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.2)向量及其线性运算.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第七章 向量代数与空间解析几何(7.1)空间直角坐标系.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用(6.3)功、水和压力.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用(6.2)定积分在几何上的应用.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第六章 定积分的应用 定积分的元素法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.5)广义积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.4)定积分的分部积分法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.3)定积分的换元积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.2)微积分基本定理.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第五章 定积分及其应用(5.1)定积分的概念.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第四章 不定积分(4.3)几类特殊函数的积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.5)隐函数的求导法则.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.6)方向导数与梯度.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.7)偏导数在几何上的应用.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第八章 多元函数微分法及其应用(8.8)多元函数的极值与最值.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.1)二重积分的概念及性质.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.2)二重积分的计算法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.3)三重积分的概念及其直角坐标计算法.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.4)利用柱面坐标和球面坐标计算三重积分.ppt
- 太原理工大学:《高等数学》课程教学资源(PPT课件)第九章 重积分(9.5)重积分的应用.ppt
- Fluent经典问题答疑.doc
- 湖北工业大学:《高数真题》2007年招收硕士学位研究生试卷(无答案).doc
- 福州大学数学与计算机科学学院:《Mathematica课件》mathematica-超级教程(张碧霞).pdf
- 福州大学数学与计算机科学学院:《Mathematica课件》第二讲 用Mathematica进行函数计算和解微积分(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第三讲 用Mathematica解方程(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第四讲 用Mathematica画函数图形(张碧霞).ppt
- 福州大学数学与计算机科学学院:《Mathematica课件》第一讲 Mathematica软件环境介绍(张碧霞).ppt
- 浙江大学:《数学建模 Mathematical Modeling》课程教学资源(课件讲稿)第一章 导论(刘利刚).pdf
- 浙江大学:《数学建模 Mathematical Modeling》课程教学资源(课件讲稿)第十章 统计回归模型(数据拟合方法再讨论).pdf
- 浙江大学:《数学建模 Mathematical Modeling》课程教学资源(课件讲稿)第十一章 差分方程模型.pdf
- 浙江大学:《数学建模 Mathematical Modeling》课程教学资源(课件讲稿)第十二章 层次分析法.pdf