哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.4)等可能概型(古典概型)

←概率论 第四节等可能概型(古典概型) ●古典概型的定义 古典概率的求法举例 小结布置作业
概率论 第四节 等可能概型(古典概型) 古典概型的定义 古典概率的求法举例 小结 布置作业

←概率论 我们首先引入的计算概率的数学模型, 是在概率论的发展过程中最早出现的研究 对象,通常称为 古典概型
概率论 我们首先引入的计算概率的数学模型, 是在概率论的发展过程中最早出现的研究 对象,通常称为 古典概型

←概率论 古典概型 假定某个试验有有限个可能的结果 19c29 N 假定从该试验的条件及实施方法上去分析, 我们找不到任何理由认为其中某一结果例如e,比 任一其它结果,例如e,更有优势,则我们只好认 为所有结果在试验中有同等可能的出现机会,即 l/N的出现机会
概率论 一、古典概型 假定某个试验有有限个可能的结果 假定从该试验的条件及实施方法上去分析, 我们找不到任何理由认为其中某一结果例如 ei,比 任一其它结果,例如 ej , 更有优势,则我们只好认 为所有结果在试验中有同等可能的出现机会,即 1/N的出现机会. e1 , e2 , …,eN

←概率论 试验结果 我无所 9c2,·· 偏爱 你认为哪个 结果出现的 可能性大? 常常把这样的试验结果称为“等可能的
概率论 常常把这样的试验结果称为“等可能的” . e1 , e2 , …,eN 试验结果 你认为哪个 结果出现的 可能性大?

←概率论 例如,一个袋子中装有10 个大小、形状完全相同的球 将球编号为1-10.把球搅匀, 蒙上眼睛,从中任取一球 ①946 2310
概率论 2 3 4 7 9 10 8 1 6 5 例如,一个袋子中装有10 个大小、形状完全相同的球 . 将球编号为1-10 .把球搅匀, 蒙上眼睛,从中任取一球

←概率论 ①②③45⑥⑦⑧⑨⑩ 因为抽取时这些球是完 10个球中的任一个被取 出的机会都是1/10 全平等的,我们没有理由认 为10个球中的某一个会比另 个更容易取得.也就是说, 10个球中的任一个被取出的 机会是相等的,均为1/10 8 72310
概率论 因为抽取时这些球是完 全平等的,我们没有理由认 为10个球中的某一个会比另 一个更容易取得 . 也就是说, 10个球中的任一个被取出的 机会是相等的,均为1/10. 1 2 3 4 5 6 7 8 9 10 10个球中的任一个被取 出的机会都是1/10 2 3 4 7 9 10 8 1 6 5

←概率论 我们用i表示取到i 如i=2 号球,i=1,2,,10 则该试验的样本空间 S={1,2,,10}, 且每个样本点(或者说基本 事件)出现的可能性相同 称这样一类随机试验为古 73010 典概型
概率论 我们用 i 表示取到 i 号球, i =1,2,…,10 . 称这样一类随机试验为古 典概型. 3 4 7 9 10 8 6 1 5 2 且每个样本点(或者说基本 事件)出现的可能性相同 . S={1,2,…,10} , 则该试验的样本空间 如i =2

←概率论 定义1 若随机试验满足下述两个条件 (1)它的样本空间只有有限多个样本点; (2)每个样本点出现的可能性相同 称这种试验为等可能随机试验或古典概型
概率论 称这种试验为等可能随机试验或古典概型. 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同. 定义 1

←概率论 二、古典概型中事件概率的计算 记A={摸到2号球} P(4)=? P(4)=1/10 记B={摸到红球} ①②③4⑤⑥ P(6)= P(B=6/10
概率论 二、古典概型中事件概率的计算 记 A={摸到2号球} P(A)=? P(A)=1/10 记 B={摸到红球} P(B)=? P(B)=6/10 2 2 3 4 7 9 10 8 6 1 5 1 2 3 4 5 6

←概率论 记B={摸到红球},PB=6/10 静态 这里实际上是从“比例 转化为“概率” 动态 当我们要求“摸到红球”的概 8 6 率时,只要找出它在静态时相应的 2310 比例
概率论 这里实际上是从“比例” 转化为“概率” 记 B={摸到红球} , P(B)=6/10 静态 动态 当我们要求“摸到红球”的概 率时,只要找出它在静态时相应的 比例. 2 3 4 7 9 10 8 6 1 5
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.3)频率与概率.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.2)样本空间 随机事件.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.1)随机试验.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)习题课七.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第七章 参数估计(7.4)正态总体均值与方差的区间估计.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第七章 参数估计(7.3)区间估计.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第七章 参数估计(7.2)估计量的评选标准.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第七章 参数估计(7.1)参数的点估计.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)习题课三.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第三章 多维随机变量及其分布(3.5)两个随机变量的函数的分布.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第三章 多维随机变量及其分布(3.4)相互独立的随机变量.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第三章 多维随机变量及其分布(3.3)条件分布.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第三章 多维随机变量及其分布(3.2)边缘分布.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第三章 多维随机变量及其分布(3.1)二维随机变量.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)习题课二.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第二章 随机变量及其分布(2.6)例题精选.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第二章 随机变量及其分布(2.5)随机变量的函数的分布.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第二章 随机变量及其分布(2.4)连续型随机变量及其概率密度.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第二章 随机变量及其分布(2.3)随机变量的分布函数.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第二章 随机变量及其分布(2.2)离散型随机变量及其分布律.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.5)条件概率.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.5)条件概率(续).ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)第一章 概率论的基本概念(1.6)独立性.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)习题课一.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)序言.ppt
- 哈尔滨理工大学:《概率论与数理统计》课程教学资源(PPT课件)主界面.ppt
- 《鞍山科技大学学报》:用模拟退火算法求解无向排列的反转排序问题(陶玉敏).pdf
- 《概率论与数理统计》课程教学资源(书籍教材)概率论与数理统计教程(PDF电子版,章节知识习题解答,共八章).pdf
- 《高等数学》课程教学资源(PPT课件讲稿)第九章 重积分(9.1)二重积分的概念与性质.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第九章 重积分(9.2)二重积分的计算.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第九章 重积分(9.3)三重积分.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第九章 重积分(9.4)重积分的应用.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第九章 重积分的计算及应用(习题课).ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(PPT课件)第1章 引言.ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(PPT课件)第3章 LINGO软件的基本使用方法.ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(PPT课件)第4章 LINGO软件与外部文件的接口.ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(PPT课件)第5章 生产与服务运作管理中的优化问题.ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(PPT课件)第6章 经济与金融中的优化问题.ppt
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(习题)例题一(谢金星).doc
- 清华大学:《优化建模与LINDO/LINGO软件》课程教学资源(习题)例题二(谢金星).xls