东南大学:《数学建模》课程教学资源(PPT课件讲稿)Lecture 5 概率模型 probability model(normal distribution & binomial distribution)

Lecture 5 probability model normal distribution binomial distribution xiaojinyu@seu.edu.cn
Lecture 5 probability model normal distribution & binomial distribution xiaojinyu@seu.edu.cn

Contents a normal distribution for continuous data a Binomial distribution for binary categorical data
Contents Normal distribution for continuous data Binomial distribution for binary categorical data 2

The normal distribution The most important distribution in statistics
The Normal Distribution The most important distribution in statistics

Normal distribution a Introduction to normal distribution ■ History ■ Parameters and shape standard normal distribution and z score ■ Area under the curve 日 Application Estimate of frequency distribution Reference interval (range)in health related field
4 Normal distribution Introduction to normal distribution ◼ History ◼ Parameters and shape ◼ standard normal distribution and Z score ◼ Area under the curve Application ◼ Estimate of frequency distribution ◼ Reference interval (range) in health_related field

HSTROY-NORMAL DISTRIBU a Johann carl friedrich gauss Germany a One of the greatest mathematician a Applied in physics, astronomy a Gaussian distribution (177~1855) AU656184200 177 DDR 6561842D0 20 Mark and Stamp in memory of Gauss
5 histroy-Normal Distribution Johann Carl Friedrich Gauss Germany One of the greatest mathematician Applied in physics, astronomy Gaussian distribution (1777~1855) Mark and Stamp in memory of Gauss

The Most Important Distribution a Many real life distributions are approximately normal. such as height, EFV1, weight, IQ, and so on. a Many other distributions can be almost normalized by appropriate data transformation(e.g. taking the log).When log X has a normal distribution, X is said to have a lognormal distribution
6 The Most Important Distribution Many real life distributions are approximately normal. such as height, EFV1,weight, IQ, and so on. Many other distributions can be almost normalized by appropriate data transformation (e.g. taking the log). When log X has a normal distribution, X is said to have a lognormal distribution

Frequency distributions of heights of adult men
7 Frequency distributions of heights of adult men. (a) (b) (c) (d)

Sample Population 日 Histogram a normal distribution curve 口 the area of the bars口 The area under the curve 日 Cumulative relative日 The cumulative probability frequency In the population 口 in the sample,the d Generally speaking the proportion of the boys chance that a boy of aged of age 12 that are lower 12 is lower than a than a specified height. specified height if he grow normall
8 Sample & Population Histogram- the area of the bars Cumulative relative frequency in the sample, the proportion of the boys of age 12 that are lower than a specified height. normal distribution curve The area under the curve The cumulative probability. In the population. Generally speaking, the chance that a boy of aged 12 is lower than a specified height if he grow normally

Definition of normal distribution 日X~N(1a3) X is distributed as normal distribution with mean u and variance O2 d The probability density function (PDF) f() for a normal distribution is given by (x f∫(X)= (-∞<X<+∞) G√2兀 Where: e=2.7182818285, base of natural logarithm T=3. 1415926536 ratio of the circumference of a circle to the diameter
9 Definition of Normal distribution X ~ N(, 2 ), X is distributed as normal distribution with mean and variance 2. The probability density function (PDF) f (x) for a normal distribution is given by Where: e = 2.7182818285, base of natural logarithm = 3.1415926536,ratio of the circumference of a circle to the diameter. X f X e 2 2 ( ) 2 1 ( ) 2 − − = (- < X < +)

The shape of a normal distribution (X-m)2 f(r) ∫(X) e √2丌 3 2 0 x 10
10 The shape of a normal distribution x 0 .1 .2 .3 .4 f(x) X f X e 2 2 ( ) 2 1 ( ) 2 − − =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 云南大学发展研究院:时间序列分析(PPT课件讲稿)向量自回归(VAR)模型.ppt
- 《统计学 STATISTICS》课程PPT课件讲稿(第三版)第6章 假设检验.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第5章 假设检验(一个总体参数的检验).pptx
- 东南大学:《描述统计学 Descriptive statistics》课程教学资源(PPT课件讲稿)Qualitative data.pptx
- 东南大学:非参数估计(PPT讲稿)nonparametric methods.ppt
- 《应用回归分析》课程PPT教学课件:第9章 含定性变量的回归模型.ppt
- 《计量经济学》课程PPT教学课件:自相关.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第6章 方差分析与试验设计.pptx
- 《回归分析》课程PPT教学课件:第4章 违背基本假设的情况.ppt
- 《统计学》课程教学资源(PPT课件讲稿)参数估计(区间估计).pptx
- 中国人民大学:《统计学》课程电子教案(第二版)第13章 时间序列分析和预测.doc
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第14章 指数(作者:贾俊平).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第13章 时间序列分析和预测.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第12章 多元线性回归.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第11章 一元线性回归.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第10章 方差分析与试验设计.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第9章 列联分析(作者:贾俊平).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第8章 假设检验.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第7章 参数估计.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第6章 抽样分布(作者:贾俊平).ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第4章 参数估计.pptx
- 《统计学》课程教学资源(PPT课件讲稿)第三讲 方差分析与多重比较.ppt
- 《SPSS》教学资源(PPT讲稿)方差、相关与回归分析.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目四 统计整理(统计分组及统计图表的编制方法).ppt
- 《SAS软件应用基础》课程PPT课件讲稿(SAS过程步)第六章 SAS过程中常用语句.ppt
- 重庆工商大学:《统计学原理》课程PPT教学课件(苏继伟)电子教案讲稿(共十一章).ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第八章 对数极大似然估计 §8.1 对数极大似然估计的基本原理.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)抽样误差和可信区间 Sampling error and confidence intervals.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目九 抽样推断(总体的区间估计和样本容量的确定).ppt
- 《概率统计》课程电子教案(PPT教学课件)第六章 参数估计与假设检验.ppt
- 《统计学》课程教学资源(PPT课件讲稿)Chapter 07 定量变量的假设检验 hypothesis testing for quantitative variable.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目六 统计基本分析指标(平均指标和变异指标).ppt
- 回归分析法(PPT讲稿)Regression Method.ppt
- 《统计学》课程教学资源(PPT课件讲稿)8.2 FREQ过程 8.4 PLOT过程 8.5 CHART过程 9.1 t检验.ppt
- 华北水利水电大学:《统计学原理》课程教学资源(PPT课件讲稿)第3章 抽样与抽样分布.pptx
- 《统计学原理》课程教学资源(PPT讲稿)平稳时间序列预测法.ppt
- 复旦大学:《博弈论》课程教学资源(PPT课件讲稿)LECTURE 2 MIXED STRATEGY GAME.ppt
- 《统计学》课程教学资源(PPT课件讲稿)非参数方法(kn-近邻估计、k-近邻规则、距离度量).ppt
- 东南大学:《统计学》课程教学资源(PPT课件)第十章 回归与相关 CORRELATION & REGRESSION.ppt
- 《预测与时间序列》教学资源(PPT讲稿)Non-Seasonal Box-Jenkins Models(Four-step iterative procedures).ppt