复旦大学:《博弈论》课程教学资源(PPT课件讲稿)LECTURE 2 MIXED STRATEGY GAME

LECTURE 2 MIXED STRATEGY GAME Notes modified from Yongqin Wang@ Fudan University
LECTURE 2 MIXED STRATEGY GAME Notes modified from Yongqin Wang @ Fudan University 1

Matching pennies Player 2 Head Tail Head 1 1 1 Player 1 1 1 1 Head is Player 1's best response to Player 2's strategy tail Tail is player 2's best response to Player 1s strategy Tail Tail is Player 1,'s best response to Player 2's strategy Head Head is Player 2's best response to Player 1's strategy Head Hence, NO Nash equilibrium
Matching pennies -1 , 1 1 , -1 1 , -1 -1 , 1 2 ◼ Head is Player 1’s best response to Player 2’s strategy Tail ◼ Tail is Player 2’s best response to Player 1’s strategy Tail ◼ Tail is Player 1’s best response to Player 2’s strategy Head ◼ Head is Player 2’s best response to Player 1’s strategy Head ➢ Hence, NO Nash equilibrium Player 1 Player 2 Tail Head Tail Head

Solving matching pennies Player 2 Head Tail Head 1 1 1 Player 1 Tail 1 1 1 1-x Randomize your strategies Player 1 chooses Head and Tail with probabilities r and r, respectively Player 2 chooses Head and Tail with probabilities g and 1-q respectively ■ Mixed Strategy Specifies that an actual move be chosen randomly from the set of pure strategies with some specific probabilities
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 3 ◼ Randomize your strategies ➢ Player 1 chooses Head and Tail with probabilities r and 1-r, respectively. ➢ Player 2 chooses Head and Tail with probabilities q and 1-q, respectively. ◼ Mixed Strategy: ➢ Specifies that an actual move be chosen randomly from the set of pure strategies with some specific probabilities. q 1-q r 1-r

M Mixed strategy A mixed strategy of a player is a probability distribution over player's(pure) strategies A mixed strategy for Chris is a probability distribution(p, 1-p) where p is the probability of playing Opera, and 1-p is that probability of playing Prize Fight If p=1 then Chris actually plays Opera. If p=0 then Chris actually plays Prize Fight Battle of sexes Pat Opera Prize Fight Opera(p) 2,1 0 0 Chris Prize Fight(1-p) 0 0 1 2
Mixed strategy Battle of sexes Pat Opera Prize Fight Chris Opera (p) 2 , 1 0 , 0 Prize Fight (1-p) 0 , 0 1 , 2 4 ◼ A mixed strategy of a player is a probability distribution over player’s (pure) strategies. ➢ A mixed strategy for Chris is a probability distribution (p, 1-p), where p is the probability of playing Opera, and 1-p is that probability of playing Prize Fight. ➢ If p=1 then Chris actually plays Opera. If p=0 then Chris actually plays Prize Fight

Solving matching pennies Player 2 Expected Head Tail payoffs Head 1 1 1-2q Player 1 Tail 11q 1 1,11-x2g-1 1-g Player 1's expected payoffs If player 1 chooses Head, -g+(1-q)=1-2g If player 1 chooses Tail, g-(1-9)=2g-1
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 5 ◼ Player 1’s expected payoffs ➢ If Player 1 chooses Head, -q+(1-q)=1-2q ➢ If Player 1 chooses Tail, q-(1-q)=2q-1 q 1-q 1-2q 2q-1 Expected payoffs r 1-r

Solving matching pennies Player 2 Expected Head Tail payoffs Head 1 1 1-2 Player 1 Tail 1 1 1 11-x2q-1 g Player 1s best response B1(q): For qFoq=0.5, indifferent(0≤r≤1) 1/2
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 6 ◼ Player 1’s best response B1(q): ➢ For q0.5, Tail (r=0) ➢ For q=0.5, indifferent (0r1) 1 q r 1 1/2 1/2 q 1-q 1-2q 2q-1 Expected payoffs r 1-r

Solving matching pennies Player 2 Expected Head Tail payoUTs Head 1 1 1 1 1-2q Player 1 Tail 1 1 1,1」1-x2q-1 Expected payoff 2x-1 1-2y Player 2's expected payoffs If Player 2 chooses Head, r-(l-r)=2r-1 If Player 2 chooses Tail, -r+(1-r)=1-2r
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 7 ◼ Player 2’s expected payoffs ➢ If Player 2 chooses Head, r-(1-r)=2r-1 ➢ If Player 2 chooses Tail, -r+(1-r)=1-2r 1-2q 2q-1 Expected payoffs r 1-r Expected q 1-q payoffs 2r-1 1-2r

Solving matching pennies Player 2 Expected Head Tail payoffs Head 1 1-2 1 g Player 1 Tail 1 1 1,11 2q-1 Expected 1-q payor 2x-1 1-2y a Player 2's best response 2 x): For r0. 5, Head (q=1) >For=0.5, indifferent(0≤q≤1) 1/2
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 8 ◼ Player 2’s best response B2(r): ➢ For r0.5, Head (q=1) ➢ For r=0.5, indifferent (0q1) q 1-q 1-2q 2q-1 Expected payoffs r 1-r Expected payoffs 2r-1 1-2r 1 q r 1 1/2 1/2

Solving matching pennies Player 2 Head Player 1's best response B1(q): Playe Head 1 1 1 For g<0.5, Head(r1)1 1 1 1 1-x For q0.5, Tail(r0) Forq=0.5, indifferent(0≤r≤1) 1-q Player 2's best response Mixed strategy B2(x) Nash equilibrium For r<0.5, Tail(go) For r0.5, Head (q=1) Forr=0.5, indifferent(0≤q≤1) v Check 1/2 0.5∈B1(0.5) q=0.5∈B2(0.5) 1/2
Solving matching pennies Player 2 Head Tail Player 1 Head -1 , 1 1 , -1 Tail 1 , -1 -1 , 1 9 ◼ Player 1’s best response B1(q): ➢ For q0.5, Tail (r=0) ➢ For q=0.5, indifferent (0r1) ◼ Player 2’s best response B2(r): ➢ For r0.5, Head (q=1) ➢ For r=0.5, indifferent (0q1) ✓ Check r = 0.5 B1(0.5) q = 0.5 B2(0.5) 1 q r 1 1/2 1/2 r 1-r q 1-q Mixed strategy Nash equilibrium

Mixed strategy: example ■ Matching pennies Player 1 has two pure strategies: H and T (Oh)=0.5, 01 T=0.5)is a Mixed strategy That is, player 1 plays H and T with probabilities 0.5 and 0.5, respectively (O1H)=0.3,010=0.7)is another Mixed strategy That is, player 1 plays H and T with probabilities 0.3 and 0.7, respectively 10
Mixed strategy: example ◼ Matching pennies ◼ Player 1 has two pure strategies: H and T ( 1 (H)=0.5, 1 (T)=0.5 ) is a Mixed strategy. That is, player 1 plays H and T with probabilities 0.5 and 0.5, respectively. ( 1 (H)=0.3, 1 (T)=0.7 ) is another Mixed strategy. That is, player 1 plays H and T with probabilities 0.3 and 0.7, respectively. 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《统计学原理》课程教学资源(PPT讲稿)平稳时间序列预测法.ppt
- 华北水利水电大学:《统计学原理》课程教学资源(PPT课件讲稿)第3章 抽样与抽样分布.pptx
- 《统计学》课程教学资源(PPT课件讲稿)8.2 FREQ过程 8.4 PLOT过程 8.5 CHART过程 9.1 t检验.ppt
- 回归分析法(PPT讲稿)Regression Method.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目六 统计基本分析指标(平均指标和变异指标).ppt
- 《统计学》课程教学资源(PPT课件讲稿)Chapter 07 定量变量的假设检验 hypothesis testing for quantitative variable.ppt
- 《概率统计》课程电子教案(PPT教学课件)第六章 参数估计与假设检验.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目九 抽样推断(总体的区间估计和样本容量的确定).ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)抽样误差和可信区间 Sampling error and confidence intervals.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第八章 对数极大似然估计 §8.1 对数极大似然估计的基本原理.ppt
- 重庆工商大学:《统计学原理》课程PPT教学课件(苏继伟)电子教案讲稿(共十一章).ppt
- 《SAS软件应用基础》课程PPT课件讲稿(SAS过程步)第六章 SAS过程中常用语句.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目四 统计整理(统计分组及统计图表的编制方法).ppt
- 《SPSS》教学资源(PPT讲稿)方差、相关与回归分析.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第三讲 方差分析与多重比较.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第4章 参数估计.pptx
- 东南大学:《数学建模》课程教学资源(PPT课件讲稿)Lecture 5 概率模型 probability model(normal distribution & binomial distribution).ppt
- 云南大学发展研究院:时间序列分析(PPT课件讲稿)向量自回归(VAR)模型.ppt
- 《统计学 STATISTICS》课程PPT课件讲稿(第三版)第6章 假设检验.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第5章 假设检验(一个总体参数的检验).pptx
- 《统计学》课程教学资源(PPT课件讲稿)非参数方法(kn-近邻估计、k-近邻规则、距离度量).ppt
- 东南大学:《统计学》课程教学资源(PPT课件)第十章 回归与相关 CORRELATION & REGRESSION.ppt
- 《预测与时间序列》教学资源(PPT讲稿)Non-Seasonal Box-Jenkins Models(Four-step iterative procedures).ppt
- 《统计学》课程教学资源(PPT课件讲稿)第十七章 分类资料的统计推断.ppt
- 《统计学》课程教学资源(PPT讲稿)潜变量的效应分析与循环效应及应用论文写作.ppt
- 清华大学出版社:《统计学原理与实务》课程教学资源(PPT课件讲稿,共十章,主编:卜晓玲、李洁).ppt
- 上海财经大学:《公共选择与政治立宪》课程教学资源(PPT课件讲稿)第七讲 其它多数规则.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第十章 双样本假设检验及区间估计.ppt
- 《市场调查与预测 Marketing Research》课程教学资源(PPT课件讲稿)第七章 调查数据的分析.ppt
- 北京师范大学:《社会科学统计软件及应用》教学资源(PPT课件讲稿)第7讲 数据的关联性分析(主讲:马秀麟).ppsx
- 《统计学》课程教学资源(PPT课件)第四章 集中趋势和离中趋势.ppt
- 北京师范大学:《社会科学统计软件及应用》教学资源(PPT课件讲稿)第9讲 降维分析与分类分析(归因分析).ppsx
- 《统计学》课程教学资源(PPT课件)项目十 相关与回归分析——相关关系的测定及回归模型的建立.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)第十三章 医学统计学方法的基本概念和基本步骤、常用统计分析软件简介.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第一章 基础统计学回顾.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)方差分析、假设检验时应注意的事项.ppt
- 《医学统计学》课程教学资源(PPT课件)第十九章 统计表和统计图.ppt
- 华中科技大学:《多元统计分析》课程教学资源(PPT课件讲稿)社会统计学导论.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第三版)第4章 概率与概率分布(作者:贾俊平).ppt
- 《房地产金融》课程教学资源(PPT课件讲稿)第四章 个人住房贷款.ppt