回归分析法(PPT讲稿)Regression Method

Regression Method
1 Regression Method

Chapter Topics Multiple regression ● Autocorrelation Slide 2
Slide 2 Chapter Topics • Multiple regression • Autocorrelation

Regression Methods To forecast an outcome (response variable, dependent variable) of a study based on a certain number of factors(explanatory variables, regressors The outcome has to be quantitative but the factors can either by quantitative or categorical Simple regression deals with situations with one explanatory variable, whereas multiple regression tackles case with more than one regressors Slide 3
Slide 3 Regression Methods • To forecast an outcome (response variable, dependent variable) of a study based on a certain number of factors (explanatory variables, regressors). • The outcome has to be quantitative but the factors can either by quantitative or categorical. • Simple Regression deals with situations with one explanatory variable, whereas multiple regression tackles case with more than one regressors

Simple linear regression Collect data Population Random Sampl le Y=bo+bx+e Unknown Relationship s Y =Bo+BX,+E, $ ②$ ②$ $ ②$ Slide 4
Slide 4 Simple Linear Regression – Collect data Population J $ J $ J $ J $ J $ Unknown Relationship Yi Xi i = + + 0 1 Random Sample J $ J $ J $ J $ Y = b +b X + e 0 1

Multiple regression Two or more explanatory variables Multiple linear regression model Y=Bo+BX1+B2X2++B,X,+e where s is the error term and E-N(O, 0) Multiple linear regression equation E()=Bo+B,X1+B2x2+.+BpXp Estimated Multiple linear regression equation Y=b+bx1+b2X2+…+bnX Slide 5
Slide 5 Multiple Regression • Two or more explanatory variables • Multiple linear regression model where is the error term and ~ N(0, 2 ) • Multiple Linear Regression Equation • Estimated Multiple Linear Regression Equation = + + + + + Y X X p X p ... 0 1 1 2 2 E Y = + X + X + + p X p ( ) ... 0 1 1 2 2 Y = b +b X +b X + +bp X p ... ˆ 0 1 1 2 2

Multiple regression Least squares criterion min e2=min(-. The formulae for the regression coefficients bo by b2 b, involve the use of matrix algebra. We will rely on computer software packages to perform the calculations b i represents an estimate of the change in Y corresponding to a one-unit change in X; when all other independent variables are held constant Slide 6
Slide 6 Multiple Regression • Least Squares Criterion • The formulae for the regression coefficients b0 , b1 , b2 , . . . bp involve the use of matrix algebra. We will rely on computer software packages to perform the calculations. • bi represents an estimate of the change in Y corresponding to a one-unit change in Xi when all other independent variables are held constant. = = = − n i i i n i ei Y Y 1 2 1 2 ) ˆ min min (

Multiple regression RZ-SSRSST=1-SSE/SST ° Adjusted R2(R2) R2=1 SSE/n-p n-1 =1-(1-R2) SST/(n-1) n-p-1 where n is the number of observations and p is the number of independent variables The Adjusted r2 compensates for the number of independent variables in the model. It may rise or fall It will fall if the increase in r2 due to the inclusion of additional variables is not enough to offset the reduction in the degrees of freedom Slide 7
Slide 7 Multiple Regression • R2=SSR/SST=1-SSE/SST • Adjusted R2 ( ) where n is the number of observations and p is the number of independent variables • The Adjusted R2 compensates for the number of independent variables in the model. It may rise or fall. • It will fall if the increase in R2 due to the inclusion of additional variables is not enough to offset the reduction in the degrees of freedom. 2 Ra 2 2 /( 1) 1 1 1 (1 ) /( 1) 1 a SSE n p n R R SST n n p − − − = − = − − − − −

Test for Significance Test for Individual Significance: t test ypothesis H0:B1=0 HG:B1≠0 Test statistic Decision rule: reject the null hypothesis at a level of significance if 2),Or p-values a Slide 8
Slide 8 Test for Significance • Test for Individual Significance: t test – Hypothesis – Test statistic – Decision rule: reject the null hypothesis at α level of significance if • , or • p-value < α : 0 : 0 0 = a i i H H i b i s b t = ) 2 ( 1; − − n p t t

Test for Significance Testing for Overall Significance: F test Test whether the multiple regression model as a whole is useful to explain y, i. e, at least one X variable in the regression model is useful to explain Y ypothesis Ho: all slope coefficients are equal to zero e.A1=B2=…=Bp=0) H a: not all Slope coefficients are equal to zero Slide 9
Slide 9 Test for Significance • Testing for Overall Significance: F test – Test whether the multiple regression model as a whole is useful to explain Y, i.e., at least one X– variable in the regression model is useful to explain Y. – Hypothesis H0 : all slope coefficients are equal to zero (i.e. β1 = β2 =…= βp =0) Ha : not all slope coefficients are equal to zero

Test for Significance Testing for Overall Significance: F test Test statistic MSR F SSR/p ∑(-万)/p MSE SSE/(n-p-1) E(-Y,)/(n-p-1 Decision rule: reject null hypothesis if F>F is based on an f distribution with p degrees of freedom in the numerator and n-p-1 degrees of freedom in the denominator or alue< a Slide
Slide 10 Test for Significance • Testing for Overall Significance: F test – Test statistic – Decision rule: reject null hypothesis if • F > Fα is based on an F distribution with p degrees of freedom in the numerator and n – p –1 degrees of freedom in the denominator, or • p-value < α ) ( 1) ˆ ( ) ˆ ( ( 1) 2 2 − − − − = − − = = Y Y n p Y Y p SSE n p SSR p MSE MSR F i i i
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《统计学》课程教学资源(PPT课件讲稿)项目六 统计基本分析指标(平均指标和变异指标).ppt
- 《统计学》课程教学资源(PPT课件讲稿)Chapter 07 定量变量的假设检验 hypothesis testing for quantitative variable.ppt
- 《概率统计》课程电子教案(PPT教学课件)第六章 参数估计与假设检验.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目九 抽样推断(总体的区间估计和样本容量的确定).ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)抽样误差和可信区间 Sampling error and confidence intervals.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第八章 对数极大似然估计 §8.1 对数极大似然估计的基本原理.ppt
- 重庆工商大学:《统计学原理》课程PPT教学课件(苏继伟)电子教案讲稿(共十一章).ppt
- 《SAS软件应用基础》课程PPT课件讲稿(SAS过程步)第六章 SAS过程中常用语句.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目四 统计整理(统计分组及统计图表的编制方法).ppt
- 《SPSS》教学资源(PPT讲稿)方差、相关与回归分析.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第三讲 方差分析与多重比较.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第4章 参数估计.pptx
- 东南大学:《数学建模》课程教学资源(PPT课件讲稿)Lecture 5 概率模型 probability model(normal distribution & binomial distribution).ppt
- 云南大学发展研究院:时间序列分析(PPT课件讲稿)向量自回归(VAR)模型.ppt
- 《统计学 STATISTICS》课程PPT课件讲稿(第三版)第6章 假设检验.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第5章 假设检验(一个总体参数的检验).pptx
- 东南大学:《描述统计学 Descriptive statistics》课程教学资源(PPT课件讲稿)Qualitative data.pptx
- 东南大学:非参数估计(PPT讲稿)nonparametric methods.ppt
- 《应用回归分析》课程PPT教学课件:第9章 含定性变量的回归模型.ppt
- 《计量经济学》课程PPT教学课件:自相关.ppt
- 《统计学》课程教学资源(PPT课件讲稿)8.2 FREQ过程 8.4 PLOT过程 8.5 CHART过程 9.1 t检验.ppt
- 华北水利水电大学:《统计学原理》课程教学资源(PPT课件讲稿)第3章 抽样与抽样分布.pptx
- 《统计学原理》课程教学资源(PPT讲稿)平稳时间序列预测法.ppt
- 复旦大学:《博弈论》课程教学资源(PPT课件讲稿)LECTURE 2 MIXED STRATEGY GAME.ppt
- 《统计学》课程教学资源(PPT课件讲稿)非参数方法(kn-近邻估计、k-近邻规则、距离度量).ppt
- 东南大学:《统计学》课程教学资源(PPT课件)第十章 回归与相关 CORRELATION & REGRESSION.ppt
- 《预测与时间序列》教学资源(PPT讲稿)Non-Seasonal Box-Jenkins Models(Four-step iterative procedures).ppt
- 《统计学》课程教学资源(PPT课件讲稿)第十七章 分类资料的统计推断.ppt
- 《统计学》课程教学资源(PPT讲稿)潜变量的效应分析与循环效应及应用论文写作.ppt
- 清华大学出版社:《统计学原理与实务》课程教学资源(PPT课件讲稿,共十章,主编:卜晓玲、李洁).ppt
- 上海财经大学:《公共选择与政治立宪》课程教学资源(PPT课件讲稿)第七讲 其它多数规则.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第十章 双样本假设检验及区间估计.ppt
- 《市场调查与预测 Marketing Research》课程教学资源(PPT课件讲稿)第七章 调查数据的分析.ppt
- 北京师范大学:《社会科学统计软件及应用》教学资源(PPT课件讲稿)第7讲 数据的关联性分析(主讲:马秀麟).ppsx
- 《统计学》课程教学资源(PPT课件)第四章 集中趋势和离中趋势.ppt
- 北京师范大学:《社会科学统计软件及应用》教学资源(PPT课件讲稿)第9讲 降维分析与分类分析(归因分析).ppsx
- 《统计学》课程教学资源(PPT课件)项目十 相关与回归分析——相关关系的测定及回归模型的建立.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)第十三章 医学统计学方法的基本概念和基本步骤、常用统计分析软件简介.ppt
- 《统计学》课程教学资源(PPT课件讲稿)第一章 基础统计学回顾.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)方差分析、假设检验时应注意的事项.ppt