东南大学:《描述统计学 Descriptive statistics》课程教学资源(PPT课件讲稿)Qualitative data

Descriptive statistics(2) Qualitative data
Descriptive statistics (2) Qualitative data 1

Another classification numerical variable categorical variable binary variable/ dichotomous polytomous variable multinomial Ordinal(or ranked data
2 Another Classification numerical variable categorical variable binary variable/ dichotomous polytomous variable multinomial Ordinal (or ranked data)

Descriptive statistics for categorical data Relative number and application tabular and graphic methods
3 Descriptive statistics for categorical data • Relative number and application • tabular and graphic methods

numerical method -Relative number Rate Proportion Ratio
4 numerical method -Relative number • Rate • Proportion • Ratio

Rate In contrast to the static nature of proportions rates are aimed at measuring the occurrences of events during or after a certain time period (1)Changes (2) Measures of morbidity and mortality
Rate • In contrast to the static nature of proportions, rates are aimed at measuring the occurrences of events during or after a certain time period. • (1) Changes • (2) Measures of Morbidity and Mortality 5

Change rate 10o 88 Relapses of 10 Korean veterans Returning Vietnam veterans Immigration 8品 1940 1950 196o 197o 198o 1990 YEar Figure 1.6 Malaria rates in the United States, 1940-1989. new value- old value change rate(%)=—old value 产×100
Change rate 6

Rate-Force Index a+b A single figure that measures the forces of specific events, for example death, disease. mortality morbidity) a= the frequency with which an event has occurred during some specified period of time a+b= the number of person exposed to the risk of the event during the same period of time K=some number such as 100, 1000, 100,000
7 Rate-Force Index • A single figure that measures the forces of specific events, for example death, disease. mortality & morbidity) • a= the frequency with which an event has occurred during some specified period of time. • a+b= the number of person exposed to the risk of the event during the same period of time • K=some number such as 100,1000,100,000 a k a b +

Vital statistics-Rates as measure of health status Incidence rate(morbidity n newcases during lyear total population on July1 prevalence rate n cases at l po int in time total population at that point in time
8 Vital Statistics-Rates as measure of health status. • Incidence rate (morbidity) • prevalence rate 1 1 n newcases during year total population on July 1 int int n cases at po in time total population at that po in time

Measures of morbidity and mortality Unlike change rates these measures are proportions 3 types of rate are commonly mentioned crude, specific, adjusted (or standardized) Crude rates are computed for an entire large group or population; they disregard factors such as age gender and race Adjusted or standardized rates are used to make valid summary comparisons between 2 or more groups possessing different age distributions
Measures of Morbidity and Mortality 3 types of rate are commonly mentioned: crude, specific, & adjusted (or standardized) Unlike change rates, these measures are proportions. Crude rates are computed for an entire large group or population; they disregard factors such as age, gender, and race. Adjusted or standardized rates are used to make valid summary comparisons between 2 or more groups possessing different age distributions. 9

The annual crude death rate is defined as the number of deaths in a calendar year divided by the population on July 1 of that year the 1980 population of california was 23,000,000(as estimated by july 1)and there were 190, 237 deaths during 1980 190.247 crude death rate 1000 23,00000 =8.3 deaths per 1000 persons per year Age-specific death rate
• The annual crude death rate is defined as the number of deaths in a calendar year divided by the population on July 1 of that year . the 1980 population of California was 23,000,000(as estimated by July 1) and there were 190,237 deaths during 1980. 10 •Age-specific death rate
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:非参数估计(PPT讲稿)nonparametric methods.ppt
- 《应用回归分析》课程PPT教学课件:第9章 含定性变量的回归模型.ppt
- 《计量经济学》课程PPT教学课件:自相关.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第6章 方差分析与试验设计.pptx
- 《回归分析》课程PPT教学课件:第4章 违背基本假设的情况.ppt
- 《统计学》课程教学资源(PPT课件讲稿)参数估计(区间估计).pptx
- 中国人民大学:《统计学》课程电子教案(第二版)第13章 时间序列分析和预测.doc
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第14章 指数(作者:贾俊平).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第13章 时间序列分析和预测.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第12章 多元线性回归.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第11章 一元线性回归.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第10章 方差分析与试验设计.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第9章 列联分析(作者:贾俊平).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第8章 假设检验.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第7章 参数估计.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第6章 抽样分布(作者:贾俊平).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第5章 概率与概率分布.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第4章 数据特征的描述(数据分布特征的测度).ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第3章 数据的整理与显示.ppt
- 中国人民大学:《统计学》课程PPT教学课件(第二版)第2章 数据的搜集.ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第5章 假设检验(一个总体参数的检验).pptx
- 《统计学 STATISTICS》课程PPT课件讲稿(第三版)第6章 假设检验.ppt
- 云南大学发展研究院:时间序列分析(PPT课件讲稿)向量自回归(VAR)模型.ppt
- 东南大学:《数学建模》课程教学资源(PPT课件讲稿)Lecture 5 概率模型 probability model(normal distribution & binomial distribution).ppt
- 华北水利水电大学:《应用统计学》课程教学资源(PPT课件讲稿)第4章 参数估计.pptx
- 《统计学》课程教学资源(PPT课件讲稿)第三讲 方差分析与多重比较.ppt
- 《SPSS》教学资源(PPT讲稿)方差、相关与回归分析.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目四 统计整理(统计分组及统计图表的编制方法).ppt
- 《SAS软件应用基础》课程PPT课件讲稿(SAS过程步)第六章 SAS过程中常用语句.ppt
- 重庆工商大学:《统计学原理》课程PPT教学课件(苏继伟)电子教案讲稿(共十一章).ppt
- 《计量经济学》课程教学资源(PPT课件讲稿)第八章 对数极大似然估计 §8.1 对数极大似然估计的基本原理.ppt
- 《医学统计学》课程教学资源(PPT课件讲稿)抽样误差和可信区间 Sampling error and confidence intervals.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目九 抽样推断(总体的区间估计和样本容量的确定).ppt
- 《概率统计》课程电子教案(PPT教学课件)第六章 参数估计与假设检验.ppt
- 《统计学》课程教学资源(PPT课件讲稿)Chapter 07 定量变量的假设检验 hypothesis testing for quantitative variable.ppt
- 《统计学》课程教学资源(PPT课件讲稿)项目六 统计基本分析指标(平均指标和变异指标).ppt
- 回归分析法(PPT讲稿)Regression Method.ppt
- 《统计学》课程教学资源(PPT课件讲稿)8.2 FREQ过程 8.4 PLOT过程 8.5 CHART过程 9.1 t检验.ppt
- 华北水利水电大学:《统计学原理》课程教学资源(PPT课件讲稿)第3章 抽样与抽样分布.pptx
- 《统计学原理》课程教学资源(PPT讲稿)平稳时间序列预测法.ppt