天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.7)高阶线性微分方程

⑩天掌 Teaching Plan on Advanced Mathematics o 第七节高阶线性微分方程 、二阶线性微分方程举例 、线性微分方程的解的结构 常数变易法 四、小结 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 第七节 高阶线性微分方程 一、二阶线性微分方程举例 二、线性微分方程的解的结构 三、常数变易法 四、小结

⑩天掌 Teaching Plan on Advanced Mathematics o 二阶线性微分方程举例 例:设有一弹簧下挂一重物如果使物体具有一个初始速度 v≠0,物体便离开平衡位置,并在平衡位置附近作上下振动 试确定物体的振动规律x=x(t). 解受力分析 1恢复力∫=-cx; 2阻力R d x dt tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 例:设有一弹簧下挂一重物,如果使物体具有一个初始速度 v0 0,物体便离开平衡位置,并在平衡位置附近作上下振动. 试确定物体的振动规律x = x(t). 解 受力分析 1.恢复力 f = −cx; 2. ; dt dx 阻力 R = − x x o 一、二阶线性微分方程举例

⑩天掌 Teaching Plan on Advanced Mathematics o F=mn,∴m 2=-cx-冬 dx d t ds+2nt+kx=0物体自由振动的微分方程 dt 若受到铅直干扰力F= H sin pt, dx dx 的+2nm+k2x= hsin pt强迫振动的方程 d2u E C,2+2B c+o u = at dt dt LC 串联电路的振荡方程 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics F = ma, , 2 2 dt dx cx dt d x m = − − 2 0 2 2 2 + + k x = dt dx n dt d x 物体自由振动的微分方程 若受到铅直干扰力 F = H sin pt, k x h pt dt dx n dt d x 2 sin 2 2 2 + + = 强迫振动的方程 t LC E u dt du dt d u Lc m c c c 2 sin 2 2 0 2 + + = 串联电路的振荡方程

⑩天掌 Teaching Plan on Advanced Mathematics o d2+P(x)+e(x)y=f(x) 二阶线性微分方程 当f(x)=时,二阶线性齐次微分方程 当f(x)≠0时,二阶线性非齐次微分方程 n阶线性微分方程 y+P(x)y+…+Pn(x)y+P(x)y=∫(x) tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 二阶线性微分方程 ( ) ( ) ( ) 2 2 Q x y f x dx dy P x dx d y + + = 当 f (x) = 0时, 二阶线性齐次微分方程 当 f (x) 0时, 二阶线性非齐次微分方程 n阶线性微分方程 ( ) ( ) ( ) ( ). 1 ( 1) 1 ( ) y P x y Pn x y Pn x y f x n n + + + − + = −

⑩天掌 Teaching Plan on Advanced Mathematics o 二、线性微分方程的解的结构 1.二阶齐次方程解的结构 y"+P(x)y+Q(x)y=0(1 定理1如果函数y(x)与y2(x)是方程)的两个解那末 y=C1y1+C2y2也是(1)的解.(C1,C2是常数) 问题:y=C11+C2y2定是通解吗? tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 二、线性微分方程的解的结构 1.二阶齐次方程解的结构: 定理 1 如果函数 ( ) 1 y x 与 ( ) 2 y x 是方程(1)的两个解,那末 1 1 2 2 y = C y + C y 也是(1)的解.( 1 2 C , C 是常数) 问题: y = C1 y1 + C2 y2一定是通解吗? y + P(x) y + Q(x) y = 0 (1)

⑩天掌 Teaching Plan on Advanced Mathematics o 定义:设y1,y2,…yn为定义在区间/内的n个函数.如 果存在n个不全为零的常数,使得当x在该区间内有恒等 式成立 k1y1+k2y2+…+knyn=0, 那么称这n个函数在区间I内线性相关.否则称线性无关 例如当x∈(-∞,+∞时,e,e,2线性无关 l,c0s2x,sin2x线性相关。 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 定义:设 n y , y , , y 1 2 为定义在区间I内的 n 个函数.如 果存在n个不全为零的常数,使得当x在该区间内有恒等 式成立 k1 y1 + k2 y2 ++ kn yn = 0, 那么称这n个函数在区间I内线性相关.否则称线性无关 例如 x x 2 2 1,cos , sin x x x e e e 2 , ,− 线性无关 线性相关。 当x (−, + )时

⑩天掌 Teaching Plan on Advanced Mathematics o 特别地:若在I上有S)≠常数,则函数y(x)与 y2(x) y2(x)在I上线性无关 定理2如果y;(x)与y2(x)是方程(1)的两个线性无关的特 解,那么y=C1y1+C2y2就是方程1)的通解 例如y"+y=0,y1=c0sx,y2=sinx, 且2=tanx≠常数,y=C1cosx+C2sinx tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 特别地: 若 在 I 上 有 常数, ( ) ( ) 2 1 y x y x 则函数 ( ) y1 x 与 ( ) y2 x 在 I 上线性无关. 定理 2 如果 ( ) 1 y x 与 ( ) 2 y x 是方程(1)的两个线性无关的特 解, 那么 1 1 2 2 y = C y + C y 就是方程(1)的通解. 例如 y + y = 0, cos , sin , y1 = x y2 = x tan , 1 且 2 = x 常数 y y cos sin . 1 2 y = C x + C x

⑩天掌 Teaching Plan on Advanced Mathematics o 2二阶非齐次线性方程的解的结构: 定理3设y是二阶非齐次线性方程 y"+P(x)y+Q(x)y=∫(x) 的一个特解,Y是与(2)对应的齐次方程(1)的通解,那么 y=y+y是二阶非齐次线性微分方程(2)的通解 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 2.二阶非齐次线性方程的解的结构: 定理 3 设 * y 是二阶非齐次线性方程 y + P(x) y + Q(x) y = f (x) (2) 的一个特解, Y 是 与(2)对应的齐次方程(1)的通解, 那 么 * y = Y + y 是二阶非齐次线性微分方程(2)的通解

⑩天掌 Teaching Plan on Advanced Mathematics o 定理4设非齐次方程(2)的右端∫(x)是几个函数之和, 如y"+P(x)y'+Q(x)y=f1(x)+f2(x)而y与y2分别是方 程, y+P(x)y+e(x)y=f(r) y+P(x)y+e(x)y=f(r) 的特解,那么y1+y2就是原方程的特解 解的叠加原理 tianjin polytechnic dmivendity
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 定理 4 设非齐次方程(2)的右端 f (x)是几个函数之和, 如 ( ) ( ) ( ) ( ) 1 2 y + P x y + Q x y = f x + f x 而 * 1 y 与 * 2 y 分别是方 程, ( ) ( ) ( ) y + P x y + Q x y = f1 x ( ) ( ) ( ) 2 y + P x y + Q x y = f x 的特解, 那么 * 2 * 1 y + y 就是原方程的特解. 解的叠加原理

⑩天掌 Teaching Plan on Advanced Mathematics o 、常数变易法 1.齐次线性方程求线性无关特解—降阶法 设是方程(1)的一个非零特解, 令y2=u(x)y1代入(1)式,得 y,u+(2y+ P(xy u+(i+P(xy+o(ryu u=0, 即p+(2y2+P(x)y;)'=0,令v= 则有y;v'+(2y1+P(x)y1)v=0 tianjin polytechnic la
Tianjin Polytechnic University Teaching Plan on Advanced Mathematics 三、常数变易法 1.齐次线性方程求线性无关特解------降阶法 设y1是方程(1)的一个非零特解, 2 1 令 y = u(x) y 代入(1)式, 得 (2 ( ) ) ( ( ) ( ) ) 0, y1u + y1 + P x y1 u + y1 + P x y1 + Q x y1 u = 令v = u , 则有 (2 ( ) ) 0, y1v + y1 + P x y1 v = (2 ( ) ) 0, 即 y1u + y1 + P x y1 u =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.6)可降阶的高阶微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.5)全微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.4)一阶线性微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.3)齐次方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.2)可分离变量的微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.1)微分方程的基本概念.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.8)一般周期函数的傅里叶级数.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.7)傅里叶级数.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.6)函数项级数的一致收敛性及一致收敛级数的基本性质.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.5)函数的幂级数展开式的应用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.4)函数展开成幂级数.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.3)幂级数.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.2)常数项级数的审敛法.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十一章 无穷级数(11.1)常数项级数的概念与性质.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(6.3)定积分在物理学上的应用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(6.2)定积分在几何学上的应用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(6.1)定积分的元素法.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第八章 多元函数微分法及其应用(8.8)多元函数的极值及求法.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第八章 多元函数微分法及其应用(8.7)方向导数与梯度.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第八章 多元函数微分法及其应用(8.6)多元函数微分学的几何应用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.8)常系数齐次线性微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十二章 微分方程(12.9)常系数非齐次线性微分方程.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.1)对弧长的曲线积分.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.2)对坐标的曲线积分.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.3)格林公式及其应用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.4)对面积的曲面积分.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.5)对坐标的曲面积分.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.6)高斯公式 通量与散度.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第十章 曲线积分与曲面积分(10.7)斯托克斯(Stokes)公式环流量与旋度.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第四章 不定积分(4.1)不定积分的概念与性质.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第四章 不定积分(4.2)换元积分法.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第四章 不定积分(4.3)分部积分法.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第四章 不定积分(4.4)有理函数的积分.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(PPT课件)第四章 不定积分(4.5)积分表的使用.ppt
- 天津工业大学数学系:《高等数学》课程电子教案(讲义)作业习题.doc
- 天津工业大学数学系:《高等数学》课程电子教案(讲义)参考文献.doc
- 天津工业大学数学系:《高等数学》课程电子教案(讲义)指定教材.doc
- 天津工业大学数学系:《高等数学》课程电子教案(讲义)考核办法.doc
- 天津工业大学数学系:《高等数学》课程电子教案(讲义)课程介绍.doc
- 咸宁职业技术学院:《概率与统计》课程教学资源_习题1-1.doc